

"A Developer will never ask you,
'Hey, what filesystem is that?'"

— Patrick McFadin

Josh Lee

Open Source Advocate
Altinity

ClickHouse® is a registered trademark of ClickHouse, Inc.
Altinity is not affiliated with or associated with ClickHouse, Inc.
We are but humble open source contributors

Observability = Visibility +
Understanding

510) ¢

Observability data vs system data

What are we storing?

Metrics, Traces, Logs, Profiles, Events
Labels/Tags

Resource Metadata

Graphs & Topologies

Snapshots & Deltas

Configuration (e.g. alerts, users, dashboards)

What do we need for observability?

Fast streaming writes

Efficient compression & storage
Time-oriented management
‘“Real-time” analytics

"Anything you can do with a
group by, that's what analytics
iS"

—Peter Marshall

More Requirements

Fast multi-row analytics
Full-text search

Tag/label search

Fast, frequent "last point" reads
Updates?

Database Archetypes

OLTP
OLAP
TSDB
Search/Analytics

Introducing the cast of
characters

Postgres (OLTP)

Cassandra (OLTP)

OpenSearch (Search & Analytics)
Prometheus (TSDB)

ClickHouse (OLAP)

Taxonomies are challenging

Search

OpenSearcl\

Solr

Loki
Prometheus

Cassandra

Postgres ClickHouse

Storage on disk

Database Storage Styles

Heap Pages + Commit Log
Time-series Blocks
Parts / Segments

Heap Pages
* the JBOD of storage styles

eeeeeeeee

Heap Pages

Vacuum Process removes Po«ge

w
. . .
B e e e —— I S————el s sss,B,s,,,,

Heap Pages

Latest page ?nserte.o(anywl«ere it fits

ninjnin[n

TSDB Blocks
Append-only

TSDB Blocks

Latest $o«mp|e a(apeno(eo("“--.._

TSDB file
(1 per timeseries)

Immutable Parts / Segments

w/ Background Compaction

Immutable Parts / Segments

Ba‘tc}\ inSerticreates atnewdpart Parts sorted and me.rge.o(n backgrow\o(

— creating larger parts

]

T
/’

Writing Data

Write Ahead Log (WAL) / Commit Log

Buffered, unordered writes stored on disk

Concurrency Control Strategies

e MVCC + Vacuum
e "Tombstone" deletes
e Last-write wins

Balanced Trees (B-Trees) %

Now we can build a Postgres

WAL
Heap Pages + MVCC
B-Tree Indexes

Postgres/MySQL/etc.

Optimized for updates/upserts and row-level reads
Strong ACID guarantees
Scaling horizontally is challenging

Analytics & Search Architecture

Log-Structured Merge Tree

time >

Data stream of k-v pairs ..are buffered in sorted memtables

\ \ 4
]

sorted S sorted S sorted S

and periodically flushed to disk...forming a set of small, sorted files.

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

Lucene Family:

Cassandra, Elastic/OpenSearch,
Apache Solr

(title:"database systems" OR content:(postgres OR "clickhouse"))

AND timestamp:[2025-01-061 TO 2025-12-31]
AND NOT tags:deprecated

Cassandra
Wide-event Scalable OLTP

Vector Engines & Search

Inverted Indexes

Bloom Filters

Approximate Nearest Neighbor (ANN Graph)

"cat" - [doc1, doc3, doc7]

"dog" - [doc2, doc5]
"parrot" - [doc1, doc4]

"ae7c" - [doc1, doc3, doc7]

"fob2" _ [doc2, doc5]
"8c93" - [doc1, doc4]

Approximate Nearest Neighbor (ANN)

A way to organize and filter vectors

Prometheus (& friends)
Time-series Database

TSDB: Data is naturally ordered by time

Excellent for frequent reads of last-sample

Latest sample_ appeno(eo(‘--..,

TSDB file
(1 per timeseries)

TSDB

No. of time series = cardinality*dimensionality

Cardinality Explosions

—{- - L

lalse +la e.|2
al

280088080880

label1+label3

label1+label2+label3

label3+label2

) L S

label4+label2

Row-oriented vs
column-oriented storage

Row-oriented Storage

Read all columns in row

Blaalel et stak ke e ak ct

Rows compressed minimally or not at all

Column-oriented

Read only selected columns

Columns highly compressed

Read 109
columns

Read 3 columns
from 109

compressed

columns over
8 threads

Read 3

Read 3
compressed
columns

\

\/

2.6 MB
(.0044%)

21 MB (.035%)

ClickHouse
Column-oriented MergeTree

Unmerged, IIIIII
ey 1

M-

part ||||||/ Fully

/ | merged

i part
] — ||||/

Query efficiency

2025-01-01

Sparse Indexes

Quickly & cheaply find data
based on an ordered key

2025-01-13

Which to choose?

[OpenTelemetry Traces
p

SNMP Metrics

(OpenTelemetry Collector)

ClickHouse

Prometheus Metrics

Logs Pipeli I
Container Logs ogs Pipeline

J OpenSearcl\

Prometheus

Kubelet Logs

VictoriaMetrics
TSDB meets MergeTree

Loki

Uncomplicated logging
(with label indexes)

Honorable Mentions

Cortex, Thanos, Mimir, TimecaleDB, Solr, Druid...

At (very) small scale

Just use what you have until it breaks (Postgres)

Hooked-on full-text search

OpenSearch has your back

One database for everything

ClickHouse is pretty cool

Wide-event analytics

ClickHouse is awesome

Filtering heavily before analyzing

OpenSearch is also a good choice here

Lots of
"last-sample" reads + alerts

Choose a TSDB like Prometheus or VictoriaMetrics

Wide-events analytics with
transactional guarantees

Cassandra or Postgres->ClickHouse

Database Style/QL Storage Indexes Use Case
(Orientation)

Postgres OLTP/SQL Heap Pages B-Tree Update/Upsert
(Row) with Guarantees
Cassandra OLTP/CQL Lucene Segments | Inverted Scalable Upserts
(Document)

Prometheus TSDB/PromQL TSDB files By label Time-series
(Columnar®) metrics, alerting
OpenSearch Search/LuceneQL | Lucene Segments | Inverted, Bloom Full-text search,
(Document) Filter, ANN analytics
ClickHouse OLAP/SQL MergeTree Parts Sparse, Inverted, | Wide-event
(Columnar) and more... analytics

Thank you and happ
querying!

Josh Lee - Altinity

