
Get a Grip on your Telemetry
using the OpenTelemetry

Collector
Adam Gardner | APAC Lead Developer Advocate at Dynatrace

Agenda

1. What Problem are we trying to solve?
2. Overview of OpenTelemetry and the Collector
3. Scenarios

a. Basic Setup w/ Batching
b. Add File and OS Info
c. Setting default log severity
d. Log severity based on content
e. Content based K/V enrichment
f. Log line standardisation

g. Sensitive info removal (dropping / filtering logs)
h. Dropping low value logs
i. Log enrichment: Ownership information
j. Extracting metrics from logs

k. Enriching logs from CSV files

Hands on

Key Takeaway

The OpenTelemetry Collector is a MUST HAVE
component in a modern Observability stack.

Hands on

What’s the Problem?

Hands on

OpenTelemetry (it’s a lot of stuff!)

Instrumentation (APIs, SDK, Auto instrumentation)

OpenTelemetry Collector

OpenTelemetry Operator

OpAMP

Semantic Conventions

Hands on

OpenTelemetry (it’s a lot of stuff!)

Instrumentation (APIs, SDK, Auto instrumentation)

OpenTelemetry Collector

OpenTelemetry Operator

OpAMP

Semantic Conventions

Hands on

Collector Architecture

Data
Receiver(s) Processor(s) Exporter(s)

Collector

Observability
Backend(s)

Data Pipelines

Hands on

Connector(s)

Receivers

● Hundreds of receivers (you can write your own too) https://dt-url.net/otel-receivers
○ OS stats
○ Log Files
○ Databases
○ Cloud Vendors
○ Kubernetes
○ Queues
○ Webhooks
○ Syslog / Netflow
○ Prometheus

Hands on

https://dt-url.net/otel-receivers

Processors

● Many ways to process data (you can write your own too) https://dt-url.net/otel-processors
○ Filtering / Redaction
○ Resource Detection
○ GeoIP Lookups
○ CSV Lookups
○ Data Transformation

Hands on

https://dt-url.net/otel-processors

Exporters

● Most vendors have standardised on the OpenTelemetry Protocol (OTLP)
https://dt-url.net/otel-exporters

Hands on

Basic Setup
receivers:
 filelog:
 include: file.log

processors:
 batch:
 send_batch_size: 500
 timeout: 2s

exporters:
 debug:
 verbosity: detailed

 otlphttp/dynatrace:
 endpoint: “https://abc12345.live.dynatrace.com/api/v2/otlp”
 headers:
 Authorization: “Api-Token ${env:DT_API_TOKEN}”

service:
 pipelines:
 logs:
 receivers: [filelog]
 processors: [batch]
 exporters: [debug, otlphttp/dynatrace]

Hands on

https://abc12345.live.dynatrace.com/api/v2/otlp

Add File and OS Info
receivers:
 filelog:
 include: file.log
 include_file_name: true
 Include_file_path: true

processors:
 batch:
 send_batch_size: 500
 timeout: 2s
 resourcedetection:
 detectors: [“system”]
 system:
 hostname_sources: [“os”]

exporters:
 debug:
 verbosity: detailed

 otlphttp/dynatrace:
 endpoint: “https://abc12345.live.dynatrace.com/api/v2/otlp”
 headers:
 Authorization: “Api-Token ${env:DT_API_TOKEN}”

service:
 pipelines:
 logs:
 receivers: [filelog]
 processors: [resourcedetection, batch]
 exporters: [debug, otlphttp/dynatrace]

Hands on

https://abc12345.live.dynatrace.com/api/v2/otlp

Log Severity
receivers:
 filelog:
 include: file.log
 include_file_name: true
 include_file_path: true

processors:
 batch:
 send_batch_size: 500
 timeout: 2s
 resourcedetection:
 detectors: ["system"]
 system:
 hostname_sources: ["os"]
 transform:
 log_statements:
 - context: log
 statements:
 - set(log.severity_text, "INFO") where IsMatch(log.severity_text, "")
 - set(log.severity_number, SEVERITY_NUMBER_INFO) where(log.severity_text, "INFO")

exporters:
 debug:
 verbosity: detailed

 otlphttp/dynatrace:
 endpoint: "https://abc12345.live.dynatrace.com/api/v2/otlp"
 headers:
 Authorization: "Api-Token ${env:DT_API_TOKEN}"
service:
 pipelines:
 logs:
 receivers: [filelog]
 processors: [resourcedetection, transform, batch]
 exporters: [debug, otlphttp/dynatrace]

Hands on

Content based Log Severity

processors:
 transform:
 log_statements:
 - context: log
 statements:
 - set(log.severity_text, "INFO") where IsMatch(log.severity_text, "")
 - set(log.severity_number, SEVERITY_NUMBER_INFO) where(log.severity_text, "INFO")
 - set(log.severity_number, SEVERITY_NUMBER_INFO) where IsMatch(log.severity_text, "INFO")
 - set(log.severity_text, "ERROR") where IsMatch(body, ".*something is broken.*")
 - set(log.severity_number, SEVERITY_NUMBER_ERROR) where IsMatch(body, ".*something is broken.*")

Hands on

Content based Conditional Metadata

processors:
 batch:
 send_batch_size: 500
 timeout: 2s
 resourcedetection:
 detectors: ["system"]
 system:
 hostname_sources: ["os"]
 transform:
 log_statements:
 - context: log
 statements:
 - set(log.attributes["support.tier"], "gold") where IsMatch(body, ".*userTier=tier1.*")
 - set(log.attributes["support.tier"], "silver") where IsMatch(body, ".*userTier=tier2.*")
 - set(log.attributes["support.tier"], "bronze") where IsMatch(body, ".*userTier=tier3.*")

Hands on

Standardising Log Lines w/ Zero Code Changes

processors:
 batch:
 send_batch_size: 500
 timeout: 2s
 resourcedetection:
 detectors: ["system"]
 system:
 hostname_sources: ["os"]
 transform:
 log_statements:
 - context: log
 statements:
 - replace_pattern(body, "user.tier=", "userTier=")
 - set(log.attributes["support.tier"], "gold") where IsMatch(body, ".*userTier=tier1.*")
 - set(log.attributes["support.tier"], "silver") where IsMatch(body, ".*userTier=tier2.*")
 - set(log.attributes["support.tier"], "bronze") where IsMatch(body, ".*userTier=tier3.*")

Hands on

Processing Sensitive Log Lines

transform:

 log_statements:

 - context: log

 statements:

 - replace_pattern(log.body, "The password is .*", "************")

Redaction

Hands on

Processing Sensitive Log Lines

processors:

 filter:

 error_mode: ignore

 logs:

 log_record:

 - 'IsMatch(body, ".*(?i)password.*")' # Case insensitive match for any log line containing `password`

service:

 pipelines:

 logs:

 receivers: [filelog]

 processors: [filter, resourcedetection, transform, batch]

Removal (Filtering [Out])

Ordering matters.
Filter to remove first.

Hands on

Removal of Low Value Logs

processors:

 filter:

 error_mode: ignore

 logs:

 log_record:

 - 'severity_number < SEVERITY_NUMBER_WARN'

Hands on

Organisational Enrichment

Requirement:

- Every log line from file.log must include:
- Team name
- Team Contact Details
- Team cross charge code

We know file.log is owned by a particular team.
How do we route tickets to them?
How do we cross charge them for log storage?

receivers:
 filelog:
 include: file.log
 include_file_name: true
 include_file_path: true
 attributes:
 team.name: teamA
 team.email: teamA@example.com
 team.chargecode: ABC556D

Hands on

Transforming Logs to Metrics

1. Read log lines
2. Extract the value of “field”
3. Sum it up & send as a metric

receivers:
 filelog:
 include: file.log
 operators:
 - type: regex_parser
 regex: 'field=(?<field_value>\d+)'
 parse_from: body
connectors:
 signaltometrics:
 logs:
 - name: "field_value"
 description: "The value of field from logs"
 sum:
 value: Int(attributes["field_value"])

service:
 pipelines:
 logs:
 receivers: [filelog]
 exporters: [signaltometrics]
 metrics:
 receivers: [signaltometrics]
 exporters: [otlphttp, debug]

1

2
3

4

Hands on

Enriching Logs using CSV Files

https://pkg.go.dev/github.com/observiq/bindplane-otel-collector/processor/lookupprocessor

Hands on

Enriching Logs using CSV Files
receivers:
 filelog:
 include: file.log
 operators:
 - type: regex_parser
 regex: 'component=(?<component>\d+)'
 parse_from: body

processors:
 lookup:
 csv: "example.csv"
 context: attributes
 field: component

service:
 pipelines:
 logs:
 receivers: [filelog]
 processors: [lookup]
 exporters: [debug, otlphttp]

https://pkg.go.dev/github.com/observiq/bindplane-otel-collector/processor/lookupprocessor
Hands on

Summary
● The collector is an enormously powerful component
● It should be part of every 2025 Observability setup
● Try all of this in a browser: https://dt-url.net/demo-collector-patterns
● Lookup processor: https://www.youtube.com/watch?v=zM43M5dzKpk

Find me: https://linkedin.com/in/agardner1

Thank
You!

Adam Gardner | APAC Lead Developer Advocate at Dynatrace

