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Agenda

1. What Problem are we trying to solve?
2. Overview of OpenTelemetry and the Collector
3. Scenarios

a. Basic Setup w/ Batching
b. Add File and OS Info
c. Setting default log severity
d. Log severity based on content
e. Content based K/V enrichment
f. Log line standardisation

g. Sensitive info removal (dropping / filtering logs)
h. Dropping low value logs
i. Log enrichment: Ownership information
j. Extracting metrics from logs

k. Enriching logs from CSV files
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Key Takeaway

The OpenTelemetry Collector is a MUST HAVE 
component in a modern Observability stack.
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What’s the Problem?
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OpenTelemetry (it’s a lot of stuff!)

Instrumentation (APIs, SDK, Auto instrumentation)

OpenTelemetry Collector

OpenTelemetry Operator

OpAMP

Semantic Conventions
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Collector Architecture

Data
Receiver(s) Processor(s) Exporter(s)

Collector

Observability
Backend(s)

Data Pipelines
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Connector(s)



Receivers

● Hundreds of receivers (you can write your own too) https://dt-url.net/otel-receivers
○ OS stats
○ Log Files
○ Databases
○ Cloud Vendors
○ Kubernetes
○ Queues
○ Webhooks
○ Syslog / Netflow
○ Prometheus
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https://dt-url.net/otel-receivers


Processors

● Many ways to process data (you can write your own too) https://dt-url.net/otel-processors
○ Filtering / Redaction
○ Resource Detection
○ GeoIP Lookups
○ CSV Lookups
○ Data Transformation
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https://dt-url.net/otel-processors


Exporters

● Most vendors have standardised on the OpenTelemetry Protocol (OTLP) 
https://dt-url.net/otel-exporters
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Basic Setup
receivers:
  filelog:
    include: file.log

processors:
  batch:
    send_batch_size: 500
    timeout: 2s

exporters:
  debug:
    verbosity: detailed

  otlphttp/dynatrace:
    endpoint: “https://abc12345.live.dynatrace.com/api/v2/otlp”
    headers:
      Authorization: “Api-Token ${env:DT_API_TOKEN}”

service:
  pipelines:
    logs:
      receivers: [filelog]
      processors: [batch]
      exporters: [debug, otlphttp/dynatrace]
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https://abc12345.live.dynatrace.com/api/v2/otlp


Add File and OS Info
receivers:
  filelog:
    include: file.log
    include_file_name: true
    Include_file_path: true

processors:
  batch:
    send_batch_size: 500
    timeout: 2s
  resourcedetection:
    detectors: [“system”]
    system:
      hostname_sources: [“os”]

exporters:
  debug:
    verbosity: detailed

  otlphttp/dynatrace:
    endpoint: “https://abc12345.live.dynatrace.com/api/v2/otlp”
    headers:
      Authorization: “Api-Token ${env:DT_API_TOKEN}”

service:
  pipelines:
    logs:
      receivers: [filelog]
      processors: [resourcedetection, batch]
      exporters: [debug, otlphttp/dynatrace]
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https://abc12345.live.dynatrace.com/api/v2/otlp


Log Severity
receivers:
  filelog:
    include: file.log
    include_file_name: true
    include_file_path: true

processors:
  batch:
    send_batch_size: 500
    timeout: 2s
  resourcedetection:
    detectors: ["system"]
    system:
      hostname_sources: ["os"]
  transform:
    log_statements:
      - context: log
        statements:
          - set(log.severity_text, "INFO") where IsMatch(log.severity_text, "")
          - set(log.severity_number, SEVERITY_NUMBER_INFO) where(log.severity_text, "INFO")

exporters:
  debug:
    verbosity: detailed

  otlphttp/dynatrace:
    endpoint: "https://abc12345.live.dynatrace.com/api/v2/otlp"
    headers: 
      Authorization: "Api-Token ${env:DT_API_TOKEN}"
service:
  pipelines:
    logs:
      receivers: [filelog]
      processors: [resourcedetection, transform, batch]
      exporters: [debug, otlphttp/dynatrace]
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Content based Log Severity

processors:
  transform:
    log_statements:
      - context: log
        statements:
          - set(log.severity_text, "INFO") where IsMatch(log.severity_text, "")
          - set(log.severity_number, SEVERITY_NUMBER_INFO) where(log.severity_text, "INFO")
          - set(log.severity_number, SEVERITY_NUMBER_INFO) where IsMatch(log.severity_text, "INFO")
          - set(log.severity_text, "ERROR") where IsMatch(body, ".*something is broken.*")
          - set(log.severity_number, SEVERITY_NUMBER_ERROR) where IsMatch(body, ".*something is broken.*")
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Content based Conditional Metadata

processors:
  batch:
    send_batch_size: 500
    timeout: 2s
  resourcedetection:
    detectors: ["system"]
    system:
      hostname_sources: ["os"]
  transform:
    log_statements:
      - context: log
        statements:
          - set(log.attributes["support.tier"], "gold") where IsMatch(body, ".*userTier=tier1.*")
          - set(log.attributes["support.tier"], "silver") where IsMatch(body, ".*userTier=tier2.*")
          - set(log.attributes["support.tier"], "bronze") where IsMatch(body, ".*userTier=tier3.*")

Hands on



Standardising Log Lines w/ Zero Code Changes

processors:
  batch:
    send_batch_size: 500
    timeout: 2s
  resourcedetection:
    detectors: ["system"]
    system:
      hostname_sources: ["os"]
  transform:
    log_statements:
      - context: log
        statements:
          - replace_pattern(body, "user.tier=", "userTier=")
          - set(log.attributes["support.tier"], "gold") where IsMatch(body, ".*userTier=tier1.*")
          - set(log.attributes["support.tier"], "silver") where IsMatch(body, ".*userTier=tier2.*")
          - set(log.attributes["support.tier"], "bronze") where IsMatch(body, ".*userTier=tier3.*")
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Processing Sensitive Log Lines

transform:

    log_statements:

      - context: log

        statements:

          - replace_pattern(log.body, "The password is .*", "************")

Redaction
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Processing Sensitive Log Lines

processors:

  filter:

    error_mode: ignore

    logs:

      log_record:

        - 'IsMatch(body, ".*(?i)password.*")' # Case insensitive match for any log line containing `password`

service:

  pipelines:

    logs:

      receivers: [filelog]

      processors: [filter, resourcedetection, transform, batch]

Removal (Filtering [Out])

Ordering matters.
Filter to remove first.
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Removal of Low Value Logs

processors:

  filter:

    error_mode: ignore

    logs:

      log_record:

        - 'severity_number < SEVERITY_NUMBER_WARN'
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Organisational Enrichment

Requirement:

- Every log line from file.log must include:
- Team name
- Team Contact Details
- Team cross charge code

We know file.log is owned by a particular team.
How do we route tickets to them?
How do we cross charge them for log storage?

receivers:
  filelog:
    include: file.log
    include_file_name: true
    include_file_path: true
    attributes:
      team.name: teamA
      team.email: teamA@example.com
      team.chargecode: ABC556D
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Transforming Logs to Metrics

1. Read log lines
2. Extract the value of “field”
3. Sum it up & send as a metric

receivers:
  filelog:
    include: file.log
    operators:
      - type: regex_parser
        regex: 'field=(?<field_value>\d+)'
        parse_from: body
connectors:
  signaltometrics:
    logs:
      - name: "field_value"
        description: "The value of field from logs"
        sum:
          value: Int(attributes["field_value"])

service:
  pipelines:
    logs:
      receivers: [filelog]
      exporters: [signaltometrics]
    metrics:
      receivers: [signaltometrics]
      exporters: [otlphttp, debug]
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Enriching Logs using CSV Files

https://pkg.go.dev/github.com/observiq/bindplane-otel-collector/processor/lookupprocessor
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Enriching Logs using CSV Files
receivers:
  filelog:
    include: file.log
    operators:
      - type: regex_parser
        regex: 'component=(?<component>\d+)'
        parse_from: body

processors:
  lookup:
    csv: "example.csv"
    context: attributes
    field: component

service:
  pipelines:
    logs:
      receivers: [filelog]
      processors: [lookup]
      exporters: [debug, otlphttp]

https://pkg.go.dev/github.com/observiq/bindplane-otel-collector/processor/lookupprocessor
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Summary
● The collector is an enormously powerful component
● It should be part of every 2025 Observability setup
● Try all of this in a browser: https://dt-url.net/demo-collector-patterns
● Lookup processor: https://www.youtube.com/watch?v=zM43M5dzKpk

Find me: https://linkedin.com/in/agardner1



Thank 
You!

Adam Gardner | APAC Lead Developer Advocate at Dynatrace


