
1

How We Built ClickStack
An open source, OpenTelemetry-native Observability stack

Mike Shi - Cofounder of HyperDX, Observability Product @ ClickHouse

2

What is ClickHouse?

Open source Column-oriented Distributed OLAP database

● Best for aggregations

● Files per column

● Sorting and indexing

● Background merges

● Replication

● Sharding

● Multi-master

● Cross-region

● Analytics use cases

● Aggregations

● Visualizations

● Mostly immutable data

● Development started 2009

● Production 2012

● OSS 2016

● #1 analytics database on

DBEngines

3

● An opinionated, end-to-end Observability stack built on
ClickHouse

○ Data ingestion

○ Schemas

○ User interface and workflows

● All components are Open source

● Native OpenTelemetry OTel support

● Democratizes ClickHouse Observability, lowering the barrier
for teams of any size

● Deploy and run in minutes anywhere

ClickStack
An Open Source Observability Stack

4

Grep

1970s

Splunk

2000s

Elastic

2010s

Graphite

2008

Prom

2012

Thanos

2017

A Brief History of Observability

Search

Metrics

Increasing Volume & Cardinality

5

Challenges with search

● Fast for “needle in a haystackˮ searches

● Not optimized for frequent writes

● Poor performance when “zooming outˮ
for trends with aggregations at scale

✓ Cost efficient

⛌ Fast aggregations

✓ Fast search

You know for search, just not aggregations

Search engines

6

Challenges with time series database

Built for metrics first

● Limited search

● Stronger aggregation performance
unless higher cardinality

● But requires pre-aggregation -
losing ability to root cause

Metric stores

✓ Cost efficient

⛌ Fast search

✓ Fast aggregations

7

Can we avoid tradeoffs?

Built for observability

● Lightweight indexes for search

● High performance aggregations on
high cardinality data

● Use object storage for cheap and
infinite storage

Mystery data
store

✓ Cost efficient

✓ Fast aggregations

✓ Fast search

? ? ?

8

Thereʼs actually a lot of things we wanted!

✓ Resource efficient

✓ Fast aggregations

✓ Fast search

✓ No log size limits

✓ Object storage support

✓ Schema on read

✓ Flexible indexing strategy

✓ Expressive query language

✓ Petabyte-scale production tested

✓ Fast aggregations ✓ Full text search

✓ Supports structured wide events

✓ Open source

✓ High compression ratios

✓ Schema on write

✓

✓ ✓ Compute/storage separation

✓

9

What were others doing?

https://github.com/ClickHouse/clickhouse-d
ocs/pull/4429/files

10

Going Columnar01

11

Answer

Question

Answer

Question

Question

Answer

Question

Answer

Question

Answer

Question

Answer

2023-11-09

2023-11-12

2023-11-13

2023-11-15

2023-11-15

2023-11-17

2023-11-10

2023-11-13

2023-11-14

2023-11-15

2023-11-16

2023-11-18

2023-11-10

2023-11-12

2023-11-13

2023-11-14

2023-11-15

2023-11-15

2023-11-15

2023-11-16

2023-11-17

2023-11-18

2023-11-13

Columnar storage

Row based

Answer 2023-11-09

Question 2023-11-10

Answer 2023-11-12

Question 2023-11-13

Question 2023-11-14

Answer 2023-11-15

Question 2023-11-15

Answer 2023-11-15

Question 2023-11-16

Answer 2023-11-17

Question 2023-11-18

 Answer 2023-11-13

PostType CreationDate

Column based

vs

ORDER BY (PostType,CreationDate) CODEC(Delta)

Benefits

● High Compression

● Only read columns
in query

● Reduced I/O

Answer

Answer

Answer

Answer

Answer

Answer

Question

Question

Question

Question

Question

Question

2023-11-09

2023-11-12

2023-11-13

2023-11-15

2023-11-15

2023-11-17

2023-11-10

2023-11-13

2023-11-14

2023-11-15

2023-11-16

2023-11-18

Answer

Answer

Answer

Answer

Answer

Answer

Question

Question

Question

Question

Question

Question

2023-11-09

2023-11-12

2023-11-13

2023-11-15

2023-11-15

2023-11-17

2023-11-10

2023-11-13

2023-11-14

2023-11-15

2023-11-16

2023-11-18

3

1

2

0

2

2023-11-10

3

1

1

1

3

AnswerAnswerAnswerAnswerAnswerAnswer
QuestionQuestionQuestionQuestionQuestionQuestion

2023-11-09312022023-11-10
31113

12

Parallel vectorized data processing
Utilizing the full resources available

Single node

Multi node

13

Sparse Primary Indices
Provides an index over our columnar storage

14

Sparse Primary Indices
Exploiting the index for fast filtering

15

Wide structured events 🤝 JSON type
Dynamic columns per field

16

Wide structured events 🤝 JSON type
With type delineation

17

S3 storage
Benefits

● Low cost retention

● Isolate read/write

paths

● Scale compute

dynamically for

investigations

18

Why columnar stores for O11y

Fast aggregations
Over high cardinality immutable data

Cost-efficient and scalable
Industry-leading compression and scalability

Fast writes and space efficient indices
Bloom filters and full text search

Schema on read/schema on write
Schema on write with JSON type, Schema on read with parsing functions

SQL native
SQL is the lingua franca for data, familiar, universal, and easy to build on

Fast selective filtering
With sparse primary key index

19

Why OpenTelemetry?02

©2025 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY20

Why OpenTelemetry?
The de facto standard = the commoditization of Observability instrumentation

● One Instrumentation approach → Many Backends:
Send data to any observability tool (e.g. ClickStack,

Datadog, Prometheus).

● Unified Telemetry: Logs, metrics, traces in a single

consistent format, easier to correlate and analyze

● Broad Language Support: SDKs for Java, Python, Go,

JS, .NET, and more - allowing easy instrumentation

across services and layers with ease

● Vendor neutral = no Lock-In: you own your data and
stay in control

● Open Standard, Growing Community: Backed by the
CNCF and major vendors

©2025 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY21

Beyond OpenTelemetry

● OTel Native ! OTel exclusive

● We decided to support any event which can be

represented as a row with both labels and metrics.

● The term “wide eventsˮ is increasing popular.

These aim to unify logs, metrics, and traces into a

single structured record, enabling simpler,

high-cardinality observability at scale.

We just need a DateTime and some default columns to select.

Bring your own schema and ingestion tooling

{

 "timestamp": "2025-08-18T09:30:00Z",

 "service": "checkout-service",

 "trace_id": "abc123def456",

 "user_id": "user_789",

 "region": "eu-west-1",

 "status_code": 200,

 "latency_ms": 152,

 "cpu_usage": 0.42,

 "error": false,

 "memory_mb": 312,

 "endpoint": "/api/v1/orders",

 "http_method": "POST",

 "cart_size": 4,

 "payment_provider": "stripe",

 "retry_count": 0,

 "release_version": "1.3.7"

}

22

Developer Experience03

©2025 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY23

Why we need a dedicated
inter face

● We need to build for every day

developers

● We canʼt always expect users

to write optimal SQL queries

and understand internals

● SQL is great for deeper

analysis but not for o11y ad hoc

investigations

Not Everyone is an O11y Expert

©2025 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY24

Hide complexity

● Lucene Syntax Converts to

SQL

● English Query Explainer

● UI Filters

● Escape Hatch to SQL

Build for every day developers

25

26

But also fast observability needs
optimizations that run database-deep
Database and UI invariably are tightly coupled

Index Design 🤝 UX Design

©2025 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY27

Many small optimizations

● (toStartOf[Minute|Hour](Timestamp),

ServiceName) for primary key

● HyperDX queries ordered by raw Timestamp

only, misaligned with sorting key → more data

scanned

● Optimization missed: ClickHouse couldnʼt apply

optimize_read_in_order, slowing down

“latest resultsˮ queries with small LIMITs

● UI introspects the table and ensures ORDER BY

toStartOf[Minute|Hour](Timestamp)

DESC, Timestamp DESC)

Align ordering with primary key

28

Many small optimizations
Chunk wide time ranges

Chunk the requests and execute until sufficient results

©2025 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY29

Summary
● Observability has evolved beyond

search engines and dedicated stores.

● Column-oriented databases are the

ideal foundation for observability.

● SQL remains the lingua franca for data

exploration and adoption.

● But to fully exploit column-stores, UIs

must be tightly coupled with the

database analyzer - delivering fast

performance and efficient workflows.

30

Thank You

play-clickstack.clickhouse.com

Public demo Get started docs

Say hello! michael.shi@clickhouse.com

