Il ClickHouse

How We Built ClickStack

An open source, OpenTelemetry-native Observability stack

Mike Shi - Cofounder of HyperDX, Observability Product @ ClickHouse

Open source

Development started 2009
Production 2012
0SS 2016

#1 analytics database on

DB-Engines

What is ClickHouse?

Column-oriented

Best for aggregations
Files per column
Sorting and indexing

Background merges

Distributed

Replication
Sharding
Multi-master

Cross-region

OLAP database

Analytics use cases
Aggregations
Visualizations

Mostly immutable data

llll: ClickHouse

ClickStack

An Open Source Observability Stack
e An opinionated, end-to-end Observability stack built on
ClickHouse
o Data ingestion
o Schemas

o User interface and workflows

e All components are Open source
A e Native OpenTelemetry (OTel) support

o e Democratizes ClickHouse Observability, lowering the barrier
for teams of any size

e Deploy and run in minutes anywhere

llll: ClickHouse

A Brief History of Observability

1970s 2000s 2010s
o— <> <> <> ..
Grep Splunk Elastic
2008 2012 2017
Metrics <> <> <>
Graphite Prom Thanos
INCreasing VolUme & Cardinglity ~+++++++ = = nrnermnn e <

llll ClickHouse

Challenges with search

Search engines

You know for search, just not aggregations
v Cost efficient

e Fast for “needle in a haystack” searches
v Fast search

e Not optimized for frequent writes

e Poor performance when “zooming out” % Fast aggregations
for trends with aggregations at scale

llll: ClickHouse

Challenges with time series database

Metric stores

Built for metrics first

e Limited search

e Stronger aggregation performance
unless higher cardinality

e But requires pre-aggregation -
losing ability to root cause

v Cost efficient

X Fast search

v Fast aggregations

llll: ClickHouse

Can we avoid tradeoffs?

Mystery data
B&M®r observability

e Lightweight indexes for search

e High performance aggregations on
high cardinality data

e Use object storage for cheap and -
infinite storage = = =

v Cost efficient
v Fast search

v Fast aggregations

llll: ClickHouse

There's actually a lot of things we wanted!

v Fast search v Full text search

8 llll ClickHouse

v Fast aggregations v High compression ratios

What were others doing?

Petabyte-Scale Log
Storage for Microservices

. [

NETFLIX

What did we need?

ANTHROP\C

llll: ClickHouse

01 Going Columnar

<.

Columnar storage

Row based Column based

PostType CreationDate ORDER BY (PostType,CreationDate) CODEC(Delta)

Answer 2023-11-069
Question 2023-11-10
Answer 2023-11-12
Question 2023-11-13
Question 2023-11-14
Answer 2023-11-15 Vs Answer
Question 2023-11-15
Answer 2023-11-15
Question 2023-11-16
Answer 2023-11-17
Question 2023-11-18
Answer 2023-11-13

Answer

2023-11-10

//’ Benefits ‘\\

e High Compression

Question

Answer e Only read columns

in query

2023-11-10 e Reduced I/0

Question
Question

Question
Question
Question

e
e

Question

llll: ClickHouse

Parallel vectorized data processing

Utilizing the full resources available

Multi node

Single node

e oo part ranges aggregate partial ORDER BY

EELENERY @ Filter + Merge Apply
in parallel and LIMIT

per stream states

b_|oEI5_s_. -Fi'l.te_r‘ . aggregate

m of row blocks aggregate
== I3 =
Final
= query

result

- Query
result

llll: ClickHouse

Sparse Primary Indices

Provides an index over our columnar storage

CREATE TABLE stackoverflow.posts

(¢
32 CODEC(Delta(4), ZSTD(1)),
Enum8('Question' = 1, 'Answer' = 2,
3, 'TagWikiExcerpt' = 4, posts table

'TagWiki' = 5, 'ModeratorNomination' = 6, PUStTYEEN: (CRéatishnate
'WikiPlaceholder' = 7, 'PrivilegeWiki' = 8),

2" DateTime64(3, 'UTC'), &

.

B e @, A5 E

ring,

Question 2023-12-26

Time64(3, 'UTC') CODEC(Delta(8), ZSTD(1)), =
i /Date” [Time64(3, 'UTC'),
tring,
nt UIntl6 CODEC(Delta(2), ZSTD(1)),

.
°
.
°
)
.

TagWiki 2024-83-24

dinality(String),

TagWiki 2024-83-24
064(3, 'UTC'),

3, 'uTC"), .
wCount TYPE minmax GRANULARITY 1

String; .
= Question 2023-12-26 S

)

ENGINE = MergeTree

PARTITION BY toYear(CreationDate)

IORDER BY (PostTypeld, toDate((PocticnUcto))l

llll: ClickHouse

Sparse Primary Indices

Exploiting the index for fast filtering

EXPLAIN indexes = 1

SELECT count()

FROM stackoverflow.posts_ordered

WHERE (CreationDate >= '2024-01-01') AND (PostTypeId = 'Question')

—explair

Expression ((Project names + Projection))
Aggregating
Expression (Before GROUP BY)
Expression
ReadFromMergeTree (stackoverflow.posts_ordered)
Indexes:
PrimaryKey
Keys:
PostTypeId
toDate(CreationDate)
Condition: and((PostTypeId in [1, 1]), (toDate(CreationDate) in [19723, +Inf)))
Parts: 14/14
Granules: 39/7578

13 rows in set. Elapsed: 0.004 sec.

Block of
8192 rows

Block of
8192 rows

Block of
8192 rows

Block of
8192 rows

Answer 2023-09-18

TagWiki 2024-03-24

posts table

PostTypeld CreationDate

Answer 2023-11-07

Answer 2023-11-07

Question 2023-12-26 5

Question 2023-12-26 ...
.
.
.
ti 2024-02-12
Question 2024-02-12 ...

TagWiki 2024-03-24 aee
.
.
.

Primary index

PostTypeId CreationDate

Question 2024-02-12
TagWiki 20824-03-24
.

llll: ClickHouse

15

Wide structured events % JSON type

Dynamic columns per field

Storage

JSON documents a.ints a.floats a.arrays a.b.strings

llll: ClickHouse

Wide structured events % JSON type

With type delineation

Storage
offsets b offsets
variant — .variant -~
_discr Li;;:;::rlvzory _discr Lil'r;‘ﬂ-’"n?enrlr{ory
.bin .bin
a.arrays a.floats a.ints a.b.strings
JSON documents o i ‘bin bin

{"a%:["foo™,"bar’], ..}
{"a":{b: sreeihg ek
[]

[]

L]

16

llll: ClickHouse

S3 storage
scale ///' Benefits ﬁ\\\

up

e Low cost retention

Isolate read/write

-I-n>
[]

larger size
paths
[current size J -- [Compute Nodej -- [Compute Nodej -- [Compute Nodej --> Sgilte e Scale compute
' dynamically for
: process data process data process data
in parallel in parallel in parallel \investigations /
'
v
scale
down

i D b OB OB O B B & =
?bject B — R — I — R — = R = =i
hngf = O F 6 ©f v & = =

llll: ClickHouse

Why columnar stores for O11y

4 A
SQL native
SQL is the lingua franca for data, familiar, universal, and easy to build on
_ Wy,
4 A

Schema on read/schema on write

Schema on write with JSON type, Schema on read with parsing functions

Fast writes and space efficient indices

Bloom filters and full text search

Fast selective filtering

With sparse primary key index

Fast aggregations

Over high cardinality immutable data

Cost-efficient and scalable

Industry-leading compression and scalability

02 Why OpenTelemetry?

Why OpenTelemetry?

The de facto standard = the commoditization of Observability instrumentation

One Instrumentation approach - Many Backends:
Send data to any observability tool (e.g. ClickStack,
Datadog, Prometheus).

Unified Telemetry: Logs, metrics, traces in a single
consistent format, easier to correlate and analyze
Broad Language Support: SDKs for Java, Python, Go,
JS, .NET, and more - allowing easy instrumentation
across services and layers with ease

Vendor neutral = no Lock-In: you own your data and
stay in control

Open Standard, Growing Community: Backed by the

CNCF and major vendors

Google Trends Score

100

80

60

40

20

(0]

/

T

Jul NEL) Jul
2019 2020 ployie]

NEY] Jul
ployil ployil

_f/\'/

NEY]
2022

Jul
2022

NEL] Jul
2023 2023

Jan
2024

Beyond OpenTelemetry

Bring your own schema and ingestion tooling

e OTel Native '= OTel exclusive

e We decided to support any event which can be

represented as a row with both labels and metrics.

e The term "wide events” is increasing popular.
These aim to unify logs, metrics, and traces into a
single structured record, enabling simpler,

high-cardinality observability at scale.

We just need a DateTime and some default columns to select.

"timestamp": "2025-08-18T09:30:00Z",
"service": "checkout-service",
"trace_id": "abc123def456",
"user_id": "user_789",
"region": "eu-west-1",
"status_code": 200,
"latency_ms": 152,
"cpu_usage": 0.42,

"error": false,

"memory_mb": 312,

"endpoint": "/api/v1/orders",
"http_method": "POST",
"cart_size": 4,
"payment_provider": "stripe",

"retry_count": 0,

"release_version": "1.3.7"

03 Developer Experience

Why we need a dedicated
inter

N Ot Eve ryo n e i S a n 01 1 y EX pe rt & ClickHouse - Query Analysis / Edit Panel

Querykind All v Query status Al v User All v able view @

Top query types over time

e We need to build for every day

developers 2 |

|| ‘ T »'
: , 7 v 7t o v b v
() We Can t always eXpeCt users 1900 2000 2100 2200 2300 0000 01:00 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 14

== c SELECT database, table, name FROM system.columns WHERE database NOT IN (7) FORMAT JSON == ¢ SELECT count() AS ¢ FROM system.processes == c INSERT INTO gith
== ¢ SELECT author, prev_author, groupArray((1, c)) AS groupArr FROM (SELECT (intDiv(toUint32(toDateTime(time)), 2) *) * 2 AS 1, author, prev_author, avg(commit_lines_deleted) ¢ F

to write optimal SQL queries e

Datasource ||||: ClickHouse ® Query options MD = auto = 171

and understand internals

A

Query Type SQL Editor

e SQL is great for deeper

E $__timeInterval(query_start_time) »
(normalizeQuery()) AS norma lized_query,
0 <
M system.query_log

analysis but not for 011y ad hoc

investigations

Hide complexity

Build for every day developers

e Lucene Syntax (Converts to
SQL)

e English Query Explainer

e Ul Filters

e Escape Hatch to SQL

) Demo Logs & SELECT Timestamp, ServiceName, SeverityText,

Body ORDER BY Timestamp
-SeverityText: info "paymeht received" /. SQL | Lucene | @@ Sep 9 06:00:57 - Sep 9 12:00:57

Searching for: Scanned Rows:

'SeverityText' does not contain info AND event has whole word payment received

4 Resume Live T:
Timestamp (Local) ServiceName SeverityText Body
Sep 9 12:00:57.843 PM info 10526 04:59:47.854450 1 client.go:214] "Conned

Examples: Full Text: my log Substring: serr Exact: level:"info"

Not: -level:info Existence: service:x Boolean: (foo OR bar) (1 Docs

@ Denoise Results

Q_ ScopeVersion <>
1.19.0

L lore

frontend Sep .938 PM cart info GetCartAsync called with userId=

show mor Sep .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]
CUSEVerTyTaxRt P Sep .938 PM cart info GetCartAsync called with userId=

oTtor Sep .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

ool Sep .938 PM cart info GetCartAsync called with userId=

info Sep .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

2

. > Sep 9 12:00:57.938 PM cart info info: cart.cartstore.ValkeyCartStore[0]
Q_ ResourceSchemaUrl 3> > Sep 9 12:00:57.738 PM cart Information GetCartAsync called with userId={userId}

https://opentele.. > Sep 9 12:00:57.739 PM cart info info: cart.cartstore.ValkeyCartStore[0]
Load more > Sep 9 12:00:57.739 PM cart info GetCartAsync called with userId=

> Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId={userId}

Q sezviceName g > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId=fuserId}

accounting > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId={userId}
ad > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId=fuserId}
artillery-loadgen > Sep 9 12: 938 PM cart Information GetCartAsync called with userId=fuserId}
cainjector > Sep 9 12: .938 PM cart Information GetCartAsync called with userId=fuserId}
cart > Sep 9 12: 938 PM cart Information GetCartAsync called with userId=fuserId}
checkout > Sep 9 12: .938 PM cart Information GetCartAsync called with userId={userId}
currency P> ESepaaRlo: .938 PM cart Information GetCartAsync called with userId={userId}
email > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId={userId}
fraud-detection > Sep 9 .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

> 9

> 9

» 9

> 9

> 9

S 9

> 9

Sep .938 cart info GetCartAsync called with userId=

EIN

Illl: ClickHouse

25

|~ Line/Bar B Table 123 Number & Search 9 Markdown
Chart Name ‘ My Ch
Data Source ‘) Logs

Count of [Events C ‘ Where ‘ ServiceName:api Body:GET

SQL | Lucene ‘ Group By ‘ SeverityText

+ Count of Events

Sum

99th Percentile

95th Percentile

Set number format

@ Past 1h Auto Granularity E

96th Percentile [l
Median
Average AA
500
9:17:00 PM 9:33 9:41:00 PM 9:49:00 PM 9 00 PM 10:08:00 PM
— countIf(and(ilik..%GET%'))) - info — countIf(and(ilik - debug — countIf(and(ilik..y, '%GET%'))) -
~

Sample Matched Events

Timestamp : Servi 5 Text : Body
> 2024-11-05T06:08:34.. hdx-staging-api debug HTTP GET /log-views
> 2024-11-05T06:08:34.. hdx-staging-api debug HTTP GET /me

llll: ClickHouse

But also fast observability needs
optimizations that run database-deep

Database and Ul invariably are tightly coupled
Index Design % UX Design

HypexDX e’ *prism* engind
Searching for: event contains prism AND event has whole word engine

Examples:

Timestamp (Local) Level Serxvice
api

api

llll: ClickHouse

Many small optimizations

(base) dalemcdiarmid@Dales-MBP ~ % clickhouse local

Align ordering With prima ry key ClickHouse local version 25.7.1.1441 (official build).
D[]

e (toStartOf[Minute|Hour](Timestamp),
ServiceName) for primary key

e HyperDX queries ordered by raw Timestamp
only, misaligned with sorting key - more data
scanned

e Optimization missed: ClickHouse couldn't apply
optimize_read_in_order, slowing down
“latest results” queries with small LIMITs

e Ul introspects the table and ensures ORDER BY
toStartOf[Minute |Hour] (Timestamp)
DESC, Timestamp DESC)

Many small optimizations

Chunk wide time ranges

Illl: ClickHouse

Chunk the requests and execute until sufficient results

llll: ClickHouse

Summary

e Observability has evolved beyond
search engines and dedicated stores.

e Column-oriented databases are the
ideal foundation for observability.

e SQL remains the lingua franca for data
exploration and adoption.

e But to fully exploit column-stores, Uls
must be tightly coupled with the
database analyzer - delivering fast

performance and efficient workflows.

) Demo Logs & SELECT Timestamp, ServiceName, SeverityText,

Body ORDER BY Timestamp

-SeverityText: info "paymeht received" /. SQL | Lucene | @@ Sep 9 06:00:57 - Sep 9 12:00:57

Searching for:
'SeverityText' does not contain info AND event has whole word payment received

Scanned Rows:

4 Resume Live T:

Examples: Full Text: my log Substring: serr Exact: level:"info"

Not: -level:info Existence: service:x Boolean: (foo OR bar) (1 Docs

@ Denoise Results

Q ScopeVersion <>

Timestamp (Local) ServiceName SeverityText Body
1.19.0 > Sep 9 12:00:57.843 PM info 10526 04:59:47.854450 1 client.go:214] "Conned

oad moze > Sep 9 12:00:57.938 PM cart info info: cart.cartstore.ValkeyCartStore[0]
Q_ ResourceSchemaUrl 3> > Sep 9 12:00:57.738 PM cart Information GetCartAsync called with userId={userId}
https://opentele.. > Sep 9 12:00:57.739 PM cart info info: cart.cartstore.ValkeyCartStore[0]

Load moxe > Sep 9 12:00:57.739 PM cart info GetCartAsync called with userId=
> Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId={userId}
Q sezviceName g > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId=fuserId}
accounting > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId={userId}
ad > Sep 9 12:00:57.938 PM cart Information GetCartAsync called with userId=fuserId}
artillery-loadgen > Sep 9 12: 938 PM cart Information GetCartAsync called with userId=fuserId}
cainjector > Sep 9 12: .938 PM cart Information GetCartAsync called with userId=fuserId}
cart > Sep 9 12: .938 PM cart Information GetCartAsync called with userId=fuserId}
checkout > Sep 9 12: .938 PM cart Information GetCartAsync called with userId={userId}
currency > Sep 9 12: .938 PM cart Information GetCartAsync called with userId={userId}
email > Sep 9 12: .938 PM cart Information GetCartAsync called with userId=fuserId}
fraud-detection > Sep 9 12: .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

frontend > Sep 9 12: .938 PM cart info GetCartAsync called with userId=
show mor > Sep 9 12: .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

9R12: =0 PM 35 inf i =

CUSEVerTyTaxRt P > Sep 38 car ?n (] (?etCaItAsync called with userId:
oTtor > Sep 9 12: .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

ool > Sep 97127 .938 PM cart info GetCartAsync called with userId=
info > Sep 9 12: .938 PM cart info info: cart.cartstore.ValkeyCartStore[0]

> Sep 9 12: +938 cart info GetCartAsync called with userId=

EIN

Illl: ClickHouse

Thank You

Public demo Get started docs

llll" ClickHouse

