
How to use AI
Assistants with your
Monitoring system
Alexander Marshalov

victoriametrics.comSimple, Reliable, Efficient Monitoring

Agenda

What is MCP and how it works

How to use VictoriaMetrics MCP Server

Features overview

About VictoriaLogs MCP Server

Integration with Cloud

Future plans

Usage scenarios and examples

victoriametrics.com

What is MCP and how it
works?

victoriametrics.comSimple, Reliable, Efficient Monitoring

victoriametrics.com

MCP – Model Context Protocol

Open standard that describes a way for AI applications and agents to

connect to and work with your data sources and tools

Introduced by Anthropic in November 2024

What is MCP?

victoriametrics.com

MCP – Model Context Protocol

Open standard that describes a way for AI applications and agents to

connect to and work with your data sources and tools

Introduced by Anthropic in November 2024

What is MCP?

victoriametrics.com

MCP – Model Context Protocol

Open standard that describes a way for AI applications and agents to

connect to and work with your data sources and tools

Introduced by Anthropic in November 2024

What is MCP?

victoriametrics.com

Since MCP was introduced

Simple, Reliable, Efficient Monitoring

https://github.com/modelcontextprotocol/servers/

https://github.com/punkpeye/awesome-mcp-servers

https://github.com/modelcontextprotocol/servers/
https://github.com/punkpeye/awesome-mcp-servers

What is MCP?

https://modelcontextprotocol.io

“Think of MCP like a USB-C port for AI applications. Just as USB-C provides a
standardized way to connect your devices to various peripherals and accessories,
MCP provides a standardized way to connect AI models to different data sources
and tools.”

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://modelcontextprotocol.io/
https://modelcontextprotocol.io

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

How MCP works?

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

How MCP works?

Any web services
or storages

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

How MCP works?

Any web services
or storages

. . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

query

How MCP works?

Any web services
or storages

. . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

query

How MCP works?

Hey, tell me
something about
my metrics…

Any web services
or storages

. . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

Any web services
or storages

. . .

query

How MCP works?

Hey, tell me
something about
my metrics…

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

Any web services
or storages

. . .

query

How MCP works?

Hey, tell me
something about
my metrics…

get all necessary data and documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

Any web services
or storages

. . .

query

How MCP works?

Hey, tell me
something about
my metrics…

I’m glad you asked

6:94:20

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

query

How MCP works?

Any web services
or storages

. . .

?

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

Any web services
or storages

. . .

query

How MCP works?

?

What is LLM?

LLM → Large Language Model

A type of artificial intelligence model trained on vast amounts of text data to
understand and generate human-like language. These models can perform
various language tasks such as writing, translation, summarization, and
question-answering by predicting the most likely next words or phrases based on
patterns learned during training.

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

Any web services
or storages

. . .

query

How MCP works?

?

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

Any web services
or storages

. . .

query

How MCP works?

Tricky
integrations,
specific for

client

Tricky
integrations,
specific for

client

Tricky
integrations,

specific for client,
service, LLM ?

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

Any web services
or storages

. . .

query

How MCP works?

Tricky
integrations,
specific for

client

Tricky
integrations,
specific for

client

Tricky
integrations,

specific for client,
service, LLM

M x N
problem

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

query

How MCP works?

Any web services
or storages

. . .

MCP Server 1

MCP Server 2

MCP Server 3

 LLM

API
calls

API
calls

API
calls

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

User

 LLM

Any web services
or storages

. . .

query
API
calls

How MCP works?

unified
API MCP ServersMCP Servers MCP Servers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

 MCP Client MCP ServersMCP Servers MCP Servers

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP
protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP ServersMCP Servers MCP Servers

MCP
protocol?

Simple, Reliable, Efficient Monitoring

Some software
with chat interface

(MCP host app)

User

 LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP ServersMCP Servers MCP Servers

MCP
protocol

victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

Common
recipes or
scenarios
that works with this MCP

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

Documentation,
specifications,
etc…

Common
recipes or
scenarios
that works with this MCP

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

Tools - some executable functionality for clients

How MCP works?

Prompts - reusable prompt templates

Resources - some data to provide context for LLM

MCP Servers declare and provide entities:

API Endpoints
(can be generated based on your OpenAPI Spec)

Documentation,
specifications,
etc…

Common
recipes or
scenarios
that works with this MCP

You can create OpenAPI based MCP Servers

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://jedisct1.github.io/openapi-mcp/

https://github.com/higress-group/openapi-to-mcpserver

https://github.com/harsha-iiiv/openapi-mcp-generator

https://github.com/ckanthony/openapi-mcp

https://mcp-link.vercel.app/

https://github.com/hannesj/mcp-openapi-schema

https://github.com/janwilmake/openapi-mcp-server

https://github.com/baryhuang/mcp-server-any-openapi

https://jedisct1.github.io/openapi-mcp/
https://github.com/higress-group/openapi-to-mcpserver
https://github.com/harsha-iiiv/openapi-mcp-generator
https://github.com/ckanthony/openapi-mcp
https://mcp-link.vercel.app/
https://github.com/hannesj/mcp-openapi-schema
https://github.com/janwilmake/openapi-mcp-server
https://github.com/baryhuang/mcp-server-any-openapi

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

MCP Client

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP ServersMCP Servers MCP Servers

MCP
protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

 MCP Client MCP ServersMCP Servers MCP Servers

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP
protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

 MCP Client MCP ServersMCP Servers MCP Servers

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP
protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

 MCP Client MCP ServersMCP Servers MCP Servers

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP
protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

MCP ServersMCP Servers MCP Servers

Some software
with chat interface

(MCP host app)

Any web services
or storages

. . .

API
calls

 LLM

 MCP Client

How MCP works?

MCP
protocolquery ?

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

MCP ServersMCP Servers MCP Servers

Some software
with chat interface

(MCP host app)

Any web services
or storages

. . .

API
calls

 LLM

 MCP Client

How MCP works?

MCP
protocolquery

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

Some software
with chat interface

(MCP host app)

Any web services
or storages

MCP ServersMCP Servers MCP Servers

. . .

API
calls

 LLM

 MCP Client

How MCP works?

query
MCP

protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

Some software
with chat interface

(MCP host app)

Any web services
or storages

MCP ServersMCP Servers MCP Servers

. . .

API
calls

 LLM

 MCP Client

How MCP works?

query
MCP

protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

Some software
with chat interface

(MCP host app)

Any web services
or storages

MCP ServersMCP Servers MCP Servers

. . .

API
calls

 LLM

 MCP Client

How MCP works?

query
MCP

protocol

Here are some
query (prompt) and
list of available
tools with their
descriptions.

Based on this data
tell me which of the
tools should I use
to answer the
query?

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

Some software
with chat interface

(MCP host app)

Any web services
or storages

MCP ServersMCP Servers MCP Servers

. . .

API
calls

 LLM

 MCP Client

How MCP works?

query
MCP

protocol

Here are some
query (prompt) and
list of available
tools with their
descriptions.

Based on this data
tell me which of the
tools should I use
to answer the
query?

Here are some
query (prompt) and
description of the
tool and it’s
parameters.

Based on this data
tell me what param
values should I use
for this tool ?

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

Some software
with chat interface

(MCP host app)

Any web services
or storages

MCP ServersMCP Servers MCP Servers

. . .

API
calls

 LLM

 MCP Client

How MCP works?

query
MCP

protocol

Here are some
query (prompt) and
list of available
tools with their
descriptions.

Based on this data
tell me which of the
tools should I use
to answer the
query?

Here are some
query (prompt) and
description of the
tool and it’s
parameters.

Based on this data
tell me what param
values should I use
for this tool ?

Here are some
query (prompt) and
extra context from
tool.

Based on this data
tell me what should
i answer next?

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

MCP ServersMCP Servers MCP Servers

Some software
with chat interface

(MCP host app)

Any web services
or storages

. . .

API
calls

 LLM

 MCP Client

How MCP works?

MCP
protocolquery

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

MCP ServersMCP Servers MCP Servers

Some software
with chat interface

(MCP host app)

Any web services
or storages

. . .

API
calls

 LLM

 MCP Client

How MCP works?

MCP
protocolquery

AI agent

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

Some software
with chat interface

(MCP host app)

AI agent

 LLM

How MCP works?

User

MCP ServersMCP Servers MCP Servers

Some software
with chat interface

(MCP host app) Any web services
or storages

. . .

API
calls

AI agent

 LLM

How MCP works?

Simple, Reliable, Efficient Monitoring victoriametrics.com

Autonomous software tools

Use AI to pursue goals and complete tasks

Show reasoning, planning and have a level of

autonomy to make decisions

can work with other agents to coordinate and

perform more complex workflows.

Simple, Reliable, Efficient Monitoring victoriametrics.com

User

MCP ServersMCP Servers MCP Servers

Some software
with chat interface

(MCP host app)

Any web services
or storages

. . .

API
calls

 LLM

 MCP Client

How MCP works?

MCP
protocolquery

AI agent

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

 LLM

 MCP Client MCP ServersMCP Servers MCP Servers

Any web services
or storages

. . .

query
API
calls

How MCP works?

MCP
protocol

Simple, Reliable, Efficient Monitoring victoriametrics.com

Some software
with chat interface

(MCP host app)

User

MCP ServersMCP Servers MCP Servers

Any web services
or storages

. . .

query

How MCP works?

Hey, tell me
something about
my metrics…

I’m glad you asked

6:94:20

VictoriaMetrics
MCP Server

victoriametrics.comSimple, Reliable, Efficient Monitoring

mcp-victoriametrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://github.com/VictoriaMetrics-Community/mcp-victoriametrics

https://github.com/VictoriaMetrics-Community/mcp-victoriametrics
https://github.com/VictoriaMetrics-Community/mcp-victoriametrics

victoriametrics.com

How to install with docker

 ▶ docker pull ghcr.io/victoriametrics-community/mcp-victoriametrics:latest

Simple, Reliable, Efficient Monitoring

victoriametrics.com

How to install with go

 ▶ go install github.com/VictoriaMetrics-Community/mcp-victoriametrics/cmd/mcp-victoriametrics@latest

Simple, Reliable, Efficient Monitoring

victoriametrics.com

How to install from source code

 ▶ git clone https://github.com/VictoriaMetrics-Community/mcp-victoriametrics.git

 ▶ cd mcp-victoriametrics

 ▶ make build # if you want to build with local tooling

 ▶ docker build -t mcp-victoriametrics . # if you want to build with docker

Simple, Reliable, Efficient Monitoring

victoriametrics.com

How to install using binaries or other methods

https://github.com/VictoriaMetrics-Community/mcp-victoriametrics

Simple, Reliable, Efficient Monitoring

https://github.com/VictoriaMetrics-Community/mcp-victoriametrics
https://github.com/VictoriaMetrics-Community/mcp-victoriametrics

victoriametrics.com

Awesome MCP clients list

Simple, Reliable, Efficient Monitoring

https://github.com/punkpeye/awesome-mcp-clientshttps://www.pulsemcp.com/clients

https://github.com/punkpeye/awesome-mcp-clients
https://www.pulsemcp.com/clients

victoriametrics.com

Which clients are supported?

Claude VS Code

Zed

JetBrains IDEs Windsurf

Cline Goose

Cursor

RooCode

Simple, Reliable, Efficient Monitoring

ChatGPT
(in beta)

Continue

LibreChat

Warp

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

Claude → claude_desktop_config.json

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

Claude → claude_desktop_config.json

← the name of MCP Server

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

Claude → claude_desktop_config.json

← the command to run

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

Claude → claude_desktop_config.json

← parameters in form of environment variables

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "servers": {
 "VictoriaMetrics": {
 "type": "stdio",
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

Visual Studio Code → settings.json → “mcp”

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

Cursor → mcp.json

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

 "context_servers": {
 "VictoriaMetrics": {
 "command": {
 "path": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
 }

Zed → settings.json

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "<YOUR_VM_INSTANCE>",
 "VM_INSTANCE_TYPE": "<YOUR_VM_INSTANCE_TYPE>"
 }
 }
 }
}

JetBrains IDE → settings

Simple, Reliable, Efficient Monitoring victoriametrics.com

Arguments (args): command line arguments of binary file

Environment variables (env): parameters of MCP

How to set up in your client ?

Command to run: can be binary file of server or tool for running it i.e. docker)

Name of mcp-server: it’s just human readable name you’ll see in UI

stdio mode

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "victoriametrics": {
 "command": "docker",
 "args": [
 "run", "-i", "--rm",
 "-e", "VM_INSTANCE_ENTRYPOINT",
 "-e", "VM_INSTANCE_TYPE",
 "ghcr.io/victoriametrics-community/mcp-victoriametrics:latest",
],
 "env": {
 "VM_INSTANCE_ENTRYPOINT": "https://play.victoriametrics.com",
 "VM_INSTANCE_TYPE": "cluster"
 }
 }
 }
}

Claude → claude_desktop_config.json

victoriametrics.com

Tools in
your client

Simple, Reliable, Efficient Monitoring

mcp-victoriametrics configuration

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://github.com/VictoriaMetrics-Community/mcp-victoriametrics

https://github.com/VictoriaMetrics-Community/mcp-victoriametrics
https://github.com/VictoriaMetrics-Community/mcp-victoriametrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

 MCP Client MCP ServersMCP Servers MCP Servers

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

 MCP Client MCP ServersMCP Servers MCP Servers

?

STDIO

Simple, Reliable, Efficient Monitoring victoriametrics.com

The most common transport

Simple, secure, no network

Only local usage, no scalability

The stdio transport enables

communication through standard

input and output streams. This is

particularly useful for local

integrations and command-line

tools

Perfect for CLIs, desktop

apps and local integrations

The fastest (100μs)

STDIO

Simple, Reliable, Efficient Monitoring victoriametrics.com

streamable

HTTP

The most common transport

Simple, secure, no network

Only local usage, no scalability

The stdio transport enables

communication through standard

input and output streams. This is

particularly useful for local

integrations and command-line

tools

The Streamable HTTP transport

uses HTTP POST requests for

client-to-server communication and

optional Server-Sent Events (SSE)

streams for server-to-client

communication.

Good for web services, APIs

Multi-tenancy, concurrency

Scalability

Slower that others: ~1-10ms

(network + HTTP overhead)

Perfect for CLIs, desktop

apps and local integrations

The fastest (100μs) Still a small adoption

STDIO

Simple, Reliable, Efficient Monitoring victoriametrics.com

streamable

HTTP

The most common transport

Simple, secure, no network

Only local usage, no scalability

The stdio transport enables

communication through standard

input and output streams. This is

particularly useful for local

integrations and command-line

tools

The Streamable HTTP transport

uses HTTP POST requests for

client-to-server communication and

optional Server-Sent Events (SSE)

streams for server-to-client

communication.

Good for web services, APIs

Multi-tenancy, concurrency

Scalability

Slower that others: ~1-10ms

(network + HTTP overhead)

SSE

Deprecated

Replaced with Streamable HTTP

But still support as only way to

connect some of the clients

The legacy SSE transport enabled

server-to-client streaming with

HTTP POST requests for

client-to-server communication.

Perfect for CLIs, desktop

apps and local integrations

The fastest (100μs) Still a small adoption

STDIO

Simple, Reliable, Efficient Monitoring victoriametrics.com

streamable

HTTP

The most common transport

Simple, secure, no network

Only local usage, no scalability

The stdio transport enables

communication through standard

input and output streams. This is

particularly useful for local

integrations and command-line

tools

The Streamable HTTP transport

uses HTTP POST requests for

client-to-server communication and

optional Server-Sent Events (SSE)

streams for server-to-client

communication.

Good for web services, APIs

Multi-tenancy, concurrency

Scalability

Slower that others: ~1-10ms

(network + HTTP overhead)

SSE

Deprecated

Replaced with Streamable HTTP

But still support as only way to

connect some of the clients

The legacy SSE transport enabled

server-to-client streaming with

HTTP POST requests for

client-to-server communication.

Perfect for CLIs, desktop

apps and local integrations

The fastest (100μs) Still a small adoption

Features overview

victoriametrics.comSimple, Reliable, Efficient Monitoring

Simple, Reliable, Efficient Monitoring victoriametrics.com

Available tools

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

Available tools

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

Available tools

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Usage scenarios
and examples

victoriametrics.comSimple, Reliable, Efficient Monitoring

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Which tenants do we have?

Simple, Reliable, Efficient Monitoring victoriametrics.com

Which tenants do we have?

I'll check which tenants are available in your VictoriaMetrics instance.

 tenants

Simple, Reliable, Efficient Monitoring victoriametrics.com

Which tenants do we have?

I'll check which tenants are available in your VictoriaMetrics instance.

Your VictoriaMetrics instance has 4 tenants:

● 0:0 (default tenant)
● 100:0
● 10:0
● 1:0

The tenant format follows the pattern accountID:projectID. The tenant "0:0" is typically the default tenant used when
no specific tenant is specified in queries.

 tenants

Simple, Reliable, Efficient Monitoring victoriametrics.com

Which tenants do we have?

I'll check which tenants are available in your VictoriaMetrics instance.

Your VictoriaMetrics instance has 4 tenants:

● 0:0 (default tenant)
● 100:0
● 10:0
● 1:0

The tenant format follows the pattern accountID:projectID. The tenant "0:0" is typically the default tenant used when
no specific tenant is specified in queries.

 tenants

from now on, let's work with default tenant

Simple, Reliable, Efficient Monitoring victoriametrics.com

Which tenants do we have?

I'll check which tenants are available in your VictoriaMetrics instance.

Your VictoriaMetrics instance has 4 tenants:

● 0:0 (default tenant)
● 100:0
● 10:0
● 1:0

The tenant format follows the pattern accountID:projectID. The tenant "0:0" is typically the default tenant used when
no specific tenant is specified in queries.

 tenants

from now on, let's work with default tenant

Understood! I'll use the default tenant "0" (which corresponds to "0:0") for all subsequent queries and operations. This
is actually the default behavior, so all VictoriaMetrics API calls will automatically use the default tenant unless you
specify otherwise.

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

explain_query / prettify_query

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

from now on, let's work with default tenant

Understood! I'll use the default tenant "0" (which corresponds to "0:0") for all subsequent queries and operations. This
is actually the default behavior, so all VictoriaMetrics API calls will automatically use the default tenant unless you
specify otherwise.

Simple, Reliable, Efficient Monitoring victoriametrics.com

from now on, let's work with default tenant

Understood! I'll use the default tenant "0" (which corresponds to "0:0") for all subsequent queries and operations. This
is actually the default behavior, so all VictoriaMetrics API calls will automatically use the default tenant unless you
specify otherwise.

What metrics do we have?

Simple, Reliable, Efficient Monitoring victoriametrics.com

from now on, let's work with default tenant

Understood! I'll use the default tenant "0" (which corresponds to "0:0") for all subsequent queries and operations. This
is actually the default behavior, so all VictoriaMetrics API calls will automatically use the default tenant unless you
specify otherwise.

What metrics do we have?

I'll get the list of available metrics from your VictoriaMetrics instance.

 metrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

What metrics do we have?

I'll get the list of available metrics from your VictoriaMetrics instance.

Your VictoriaMetrics instance has a comprehensive set of metrics across various categories:

● Infrastructure & System Metrics:
○ Kubernetes components: Extensive metrics from API server (apiserver_*), kubelet (kubelet_*), controller

runtime (controller_runtime_*)
○ Node metrics: CPU, memory, disk, network statistics (node_*)
○ Container metrics: Resource usage, filesystem, network (container_*)

● Monitoring & Observability:
○ Prometheus ecosystem: Alertmanager (alertmanager_*), kube-state-metrics (kube_*)
○ VictoriaMetrics components: VM storage (vm_*), VMAgent (vmagent_*), VMAlert (vmalert_*), VMAuth

(vmauth_*)
○ VictoriaLogs: (vl_*) for log management
○ Vector log collector: (vector_*)
○ ArgoCD: Application and GitOps metrics (argocd_*)

● Application & Custom Metrics:
○ Go runtime: Garbage collection, memory, goroutines (go_*)
○ HTTP & networking: Request durations, connection stats (grpc_*, rest_client_*)
○ Custom applications: Various business metrics like all_visits_count, unique_visits_count, github_*, docker_*

You have 808 unique metrics covering infrastructure monitoring, application performance, and business analytics. This
suggests a robust monitoring setup with full observability across your stack.

Would you like me to analyze any specific metric category or help you explore particular aspects of your monitoring data?

 metrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

Show me argcd metrics

I'll get the list of available metrics from your VictoriaMetrics instance.

Your VictoriaMetrics instance has a comprehensive set of metrics across various categories:

● Infrastructure & System Metrics:
○ Kubernetes components: Extensive metrics from API server (apiserver_*), kubelet (kubelet_*), controller

runtime (controller_runtime_*)
○ Node metrics: CPU, memory, disk, network statistics (node_*)
○ Container metrics: Resource usage, filesystem, network (container_*)

● Monitoring & Observability:
○ Prometheus ecosystem: Alertmanager (alertmanager_*), kube-state-metrics (kube_*)
○ VictoriaMetrics components: VM storage (vm_*), VMAgent (vmagent_*), VMAlert (vmalert_*), VMAuth

(vmauth_*)
○ VictoriaLogs: (vl_*) for log management
○ Vector log collector: (vector_*)
○ ArgoCD: Application and GitOps metrics (argocd_*)

● Application & Custom Metrics:
○ Go runtime: Garbage collection, memory, goroutines (go_*)
○ HTTP & networking: Request durations, connection stats (grpc_*, rest_client_*)
○ Custom applications: Various business metrics like all_visits_count, unique_visits_count, github_*, docker_*

You have 808 unique metrics covering infrastructure monitoring, application performance, and business analytics. This
suggests a robust monitoring setup with full observability across your stack.

Would you like me to analyze any specific metric category or help you explore particular aspects of your monitoring data?

 metrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

Show me argcd metrics

I'll get the list of available metrics from your VictoriaMetrics instance.

Your VictoriaMetrics instance has a comprehensive set of metrics across various categories:

● Infrastructure & System Metrics:
○ Kubernetes components: Extensive metrics from API server (apiserver_*), kubelet (kubelet_*), controller

runtime (controller_runtime_*)
○ Node metrics: CPU, memory, disk, network statistics (node_*)
○ Container metrics: Resource usage, filesystem, network (container_*)

● Monitoring & Observability:
○ Prometheus ecosystem: Alertmanager (alertmanager_*), kube-state-metrics (kube_*)
○ VictoriaMetrics components: VM storage (vm_*), VMAgent (vmagent_*), VMAlert (vmalert_*), VMAuth

(vmauth_*)
○ VictoriaLogs: (vl_*) for log management
○ Vector log collector: (vector_*)
○ ArgoCD: Application and GitOps metrics (argocd_*)

● Application & Custom Metrics:
○ Go runtime: Garbage collection, memory, goroutines (go_*)
○ HTTP & networking: Request durations, connection stats (grpc_*, rest_client_*)
○ Custom applications: Various business metrics like all_visits_count, unique_visits_count, github_*, docker_*

You have 808 unique metrics covering infrastructure monitoring, application performance, and business analytics. This
suggests a robust monitoring setup with full observability across your stack.

Would you like me to analyze any specific metric category or help you explore particular aspects of your monitoring data?

 metrics

I'll get the ArgoCD metrics from your VictoriaMetrics instance.

 metrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

Show me argcd metrics

 metrics

I'll get the ArgoCD metrics from your VictoriaMetrics instance.

Perfect! Here are all the ArgoCD metrics available in your VictoriaMetrics instance:

ArgoCD Metrics Categories

Application Management

● argocd_app_info - Information about ArgoCD applications
● argocd_app_orphaned_resources_count - Count of orphaned resources per application
● argocd_app_reconcile_bucket/count/sum - Application reconciliation performance metrics

Cluster Management

● argocd_cluster_api_resource_objects - Number of API resource objects in clusters
● argocd_cluster_api_resources - Count of API resources in clusters
● argocd_cluster_cache_age_seconds - Age of cluster cache data
● argocd_cluster_connection_status - Connection status to managed clusters
● argocd_cluster_events_total - Total cluster events processed
● argocd_cluster_info - Information about managed clusters

Git Operations

● argocd_git_request_duration_seconds_* - Git request latency metrics (histogram)
● argocd_git_request_total - Total Git requests made

 . . .

 metrics

Simple, Reliable, Efficient Monitoring victoriametrics.com

What labels does the argocd_app_info have?

Kubectl Operations

● argocd_kubectl_rate_limiter_duration_seconds_* - Rate limiting duration metrics
● argocd_kubectl_request_duration_seconds_* - Kubectl request performance
● argocd_kubectl_request_size_bytes_* - Size of kubectl requests
● argocd_kubectl_requests_total - Total kubectl requests
● argocd_kubectl_response_size_bytes_* - Size of kubectl responses

Redis Operations

● argocd_redis_request_duration_* - Redis request latency metrics
● argocd_redis_request_total - Total Redis requests

Repository Management

● argocd_repo_pending_request_total - Pending repository requests

Resource Processing

● argocd_resource_events_processed_in_batch - Git request latency metrics (histogram)
● argocd_resource_events_processing_* - Resource event processing performance

General Info

● argocd_info - General ArgoCD instance information

Would you like me to query specific ArgoCD metrics to see their current values or analyze particular aspects of your
ArgoCD deployment performance?

Simple, Reliable, Efficient Monitoring victoriametrics.com

What labels does the argocd_app_info have?

Kubectl Operations

● argocd_kubectl_rate_limiter_duration_seconds_* - Rate limiting duration metrics
● argocd_kubectl_request_duration_seconds_* - Kubectl request performance
● argocd_kubectl_request_size_bytes_* - Size of kubectl requests
● argocd_kubectl_requests_total - Total kubectl requests
● argocd_kubectl_response_size_bytes_* - Size of kubectl responses

Redis Operations

● argocd_redis_request_duration_* - Redis request latency metrics
● argocd_redis_request_total - Total Redis requests

Repository Management

● argocd_repo_pending_request_total - Pending repository requests

Resource Processing

● argocd_resource_events_processed_in_batch - Git request latency metrics (histogram)
● argocd_resource_events_processing_* - Resource event processing performance

General Info

● argocd_info - General ArgoCD instance information

Would you like me to query specific ArgoCD metrics to see their current values or analyze particular aspects of your
ArgoCD deployment performance?

I'll query the series for argocd_app_info to see what labels are available.

 series

Simple, Reliable, Efficient Monitoring victoriametrics.com

What labels does the argocd_app_info have?

I'll query the series for argocd_app_info to see what labels are available.

Based on the series data, the argocd_app_info metric has the following labels:

ArgoCD-Specific Labels

● name - The name of the ArgoCD application (e.g., "grafana", "monitoring", "argocd")
● autosync_enabled - Whether auto-sync is enabled ("true"/"false")
● dest_namespace - The destination namespace where the app is deployed
● health_status - Application health status (e.g., "Healthy")
● project - ArgoCD project name (e.g., "default")
● repo - Git repository URL or Helm chart repository
● sync_status - Synchronization status (e.g., "Synced")

Standard Kubernetes/Prometheus Labels

● namespace - Kubernetes namespace where ArgoCD is running ("argocd")
● cluster - Cluster identifier ("sandbox")
● service - Kubernetes service name ("argocd-metrics")
● job - Prometheus job name ("argocd-metrics")
● instance - Instance endpoint ("10.71.10.3:8082")
● pod - Pod name ("argocd-application-controller-0")
● container - Container name ("argocd-application-controller")
● endpoint - Metrics endpoint ("metrics")

 series

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

What values i have for label name of this metric?

● health_status - Application health status (e.g., "Healthy")
● project - ArgoCD project name (e.g., "default")
● repo - Git repository URL or Helm chart repository
● sync_status - Synchronization status (e.g., "Synced")

Standard Kubernetes/Prometheus Labels

● namespace - Kubernetes namespace where ArgoCD is running ("argocd")
● cluster - Cluster identifier ("sandbox")
● service - Kubernetes service name ("argocd-metrics")
● job - Prometheus job name ("argocd-metrics")
● instance - Instance endpoint ("10.71.10.3:8082")
● pod - Pod name ("argocd-application-controller-0")
● container - Container name ("argocd-application-controller")
● endpoint - Metrics endpoint ("metrics")
● exported_namespace - Original namespace label ("argocd")
● prometheus - Prometheus instance ("monitoring/monitoring-vmagent")

Your Current Applications

I can see you have 24 ArgoCD applications deployed, all with:
●✅ Auto-sync enabled
●✅ Healthy status
●✅ Synced state

Some notable applications include monitoring tools (Grafana, Prometheus), VictoriaMetrics components, and various
operational tools.
Would you like me to query specific applications or analyze the health/sync status across your ArgoCD deployment?

Simple, Reliable, Efficient Monitoring victoriametrics.com

What values i have for label name of this metric?

● health_status - Application health status (e.g., "Healthy")
● project - ArgoCD project name (e.g., "default")
● repo - Git repository URL or Helm chart repository
● sync_status - Synchronization status (e.g., "Synced")

Standard Kubernetes/Prometheus Labels

● namespace - Kubernetes namespace where ArgoCD is running ("argocd")
● cluster - Cluster identifier ("sandbox")
● service - Kubernetes service name ("argocd-metrics")
● job - Prometheus job name ("argocd-metrics")
● instance - Instance endpoint ("10.71.10.3:8082")
● pod - Pod name ("argocd-application-controller-0")
● container - Container name ("argocd-application-controller")
● endpoint - Metrics endpoint ("metrics")
● exported_namespace - Original namespace label ("argocd")
● prometheus - Prometheus instance ("monitoring/monitoring-vmagent")

Your Current Applications

I can see you have 24 ArgoCD applications deployed, all with:
●✅ Auto-sync enabled
●✅ Healthy status
●✅ Synced state

Some notable applications include monitoring tools (Grafana, Prometheus), VictoriaMetrics components, and various
operational tools.
Would you like me to query specific applications or analyze the health/sync status across your ArgoCD deployment?

I'll get the distinct values for the name label of the argocd_app_info metric.

 label_values

Simple, Reliable, Efficient Monitoring victoriametrics.com

What values i have for label name of this metric?

I'll get the distinct values for the name label of the argocd_app_info metric.

Here are all the values for the name label of the argocd_app_info metric, representing your deployed ArgoCD applications:
Your ArgoCD Applications (24 total)
Monitoring & Observability

● analytic-exporter
● grafana
● grafana-dashboards
● kube-state-metrics
● monitoring
● node-exporter
● play-grafana
● play-grafana-dashboards

VictoriaMetrics Ecosystem
● victoria-metrics-operator
● vmlicense
● vmlogs-single
● vmlogs-slack2logs
● benchmark-vm-cluster

MCP (Model Context Protocol) Services
● mcp-victorialogs

 label_values

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

show me current alerts

Simple, Reliable, Efficient Monitoring victoriametrics.com

show me current alerts

I'll check the current alerts in your VictoriaMetrics instance.

 alerts

Simple, Reliable, Efficient Monitoring victoriametrics.com

show me current alerts

I'll check the current alerts in your VictoriaMetrics instance.

Alert Summary
You have many firing alerts and several pending alerts currently active in your sandbox cluster.

Critical Alerts (Firing) 🔴
HostFilesystemDeviceError - Multiple instances

● Severity: Critical
● Status: Firing (since May 26, 2025)
● Issue: Permission denied errors on filesystem devices
● Affected instances: Multiple nodes (10.142.0.x:9100)
● Devices affected:

○ tmpfs filesystems (Kubernetes projected volumes, secrets, config maps)
○ /dev/sdb, /dev/sdc persistent disk mount points
○ Various Kubernetes volume mount paths

HostCpuIsUnderutilized - Some instances
● Severity: Info
● Status: Firing
● Issue: CPU utilization < 20% for extended periods
● Recommendation: Consider reducing CPU allocation

Pending Alerts ⏳
HostCpuIsUnderutilized - Multiple instances

 alerts

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

show me the graph for the queries for these alerts

○ tmpfs filesystems (Kubernetes projected volumes, secrets, config maps)
○ /dev/sdb, /dev/sdc persistent disk mount points
○ Various Kubernetes volume mount paths

HostCpuIsUnderutilized - Some instances
● Severity: Info
● Status: Firing
● Issue: CPU utilization < 20% for extended periods
● Recommendation: Consider reducing CPU allocation

Pending Alerts ⏳
HostCpuIsUnderutilized - Multiple instances

● Severity: Info
● Status: Firing
● Issue: CPU utilization < 20% for 1 week
● Recommendation: Various nodes showing underutilization

Key Issues to Address
1. Permission Issues: The filesystem device errors suggest there are permission problems accessing mounted volumes

on your Kubernetes nodes. This could impact application functionality.
2. Resource Optimization: Multiple CPU underutilization alerts suggest you may be able to optimize your cluster

resource allocation.
3. Cluster Health: The large number of filesystem permission errors across multiple nodes indicates a systemic issue

that should be investigated.
Most of these alerts are from your sandbox-gke environment in the sandbox cluster. The filesystem permission errors in
particular warrant immediate attention as they could affect application performance and stability.

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

what alerting rules i have?

Simple, Reliable, Efficient Monitoring victoriametrics.com

what alerting rules i have?

I'll check what alerting rules are configured in your VictoriaMetrics instance.

 rules

Simple, Reliable, Efficient Monitoring victoriametrics.com

what alerting rules i have?

I'll check what alerting rules are configured in your VictoriaMetrics instance.

Great! Now I can see your alerting rule groups. You have quite a comprehensive alerting setup with 16 different rule
groups. Here's what I found:

Your Alerting Rule Groups
You have 16 alerting rule groups configured across several files:

Rule Groups by Category:
Infrastructure & Host Monitoring:

● node-exporter - Host-level monitoring alerts
● container-events - Container event monitoring
● kubernetes-apps - Kubernetes application alerts
● kubernetes-storage - Kubernetes storage alerts

VictoriaMetrics Monitoring:
● vm-health - VictoriaMetrics health monitoring
● vm-license - VictoriaMetrics license monitoring
● vmagent - VMAgent monitoring alerts
● vmalert - VMAlert monitoring alerts
● vmcluster - VMCluster monitoring alerts

Application Monitoring:
● ArgoCD - ArgoCD application alerts
● analitycs-exporter - Analytics exporter monitoring

 rules

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

Show me 3 slowest queries

Simple, Reliable, Efficient Monitoring victoriametrics.com

Show me 3 slowest queries

I'll help you find the 3 slowest queries by checking the top queries with the biggest average execution duration.

 top_queries

Simple, Reliable, Efficient Monitoring victoriametrics.com

Show me 5 slowest queries

I'll help you find the 3 slowest queries by checking the top queries with the biggest average execution duration.

Here are the 3 slowest queries by average execution duration in your VictoriaMetrics instance:

Top 3 Slowest Queries
1. Filesystem Space Prediction (4h) - 0.249 seconds

2. Filesystem Inodes Prediction (24h) - 0.206 seconds

3. Filesystem Inodes Prediction (4h) - 0.194 seconds

 top_queries

(node_filesystem_avail_bytes{job="node-exporter",fstype!=""} /
node_filesystem_size_bytes{job="node-exporter",fstype!=""} * 100 < 15 and
predict_linear(node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h], 4*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

(node_filesystem_files_free{job="node-exporter",fstype!=""} /
node_filesystem_files{job="node-exporter",fstype!=""} * 100 < 40 and
predict_linear(node_filesystem_files_free{job="node-exporter",fstype!=""}[6h], 24*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

(node_filesystem_files_free{job="node-exporter",fstype!=""} /
node_filesystem_files{job="node-exporter",fstype!=""} * 100 < 20 and
predict_linear(node_filesystem_files_free{job="node-exporter",fstype!=""}[6h], 4*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Let's work with the first one. Please prettify it

1. Filesystem Space Prediction (4h) - 0.249 seconds

2. Filesystem Inodes Prediction (24h) - 0.206 seconds

3. Filesystem Inodes Prediction (4h) - 0.194 seconds

Key Observations
All of your slowest queries are related to filesystem monitoring and use predict_linear() functions, which are
computationally expensive as they perform linear regression calculations over time series data. These queries are likely
part of alerting rules for predicting when filesystems will run out of space or inodes.
The slowest query takes about 249ms on average, which suggests your VictoriaMetrics instance is performing well overall
with relatively fast query execution times.

(node_filesystem_avail_bytes{job="node-exporter",fstype!=""} /
node_filesystem_size_bytes{job="node-exporter",fstype!=""} * 100 < 15 and
predict_linear(node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h], 4*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

(node_filesystem_files_free{job="node-exporter",fstype!=""} /
node_filesystem_files{job="node-exporter",fstype!=""} * 100 < 40 and
predict_linear(node_filesystem_files_free{job="node-exporter",fstype!=""}[6h], 24*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

(node_filesystem_files_free{job="node-exporter",fstype!=""} /
node_filesystem_files{job="node-exporter",fstype!=""} * 100 < 20 and
predict_linear(node_filesystem_files_free{job="node-exporter",fstype!=""}[6h], 4*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

Simple, Reliable, Efficient Monitoring victoriametrics.com

Let's work with the first one. Please prettify it

1. Filesystem Space Prediction (4h) - 0.249 seconds

2. Filesystem Inodes Prediction (24h) - 0.206 seconds

3. Filesystem Inodes Prediction (4h) - 0.194 seconds

Key Observations
All of your slowest queries are related to filesystem monitoring and use predict_linear() functions, which are
computationally expensive as they perform linear regression calculations over time series data. These queries are likely
part of alerting rules for predicting when filesystems will run out of space or inodes.
The slowest query takes about 249ms on average, which suggests your VictoriaMetrics instance is performing well overall
with relatively fast query execution times.

(node_filesystem_avail_bytes{job="node-exporter",fstype!=""} /
node_filesystem_size_bytes{job="node-exporter",fstype!=""} * 100 < 15 and
predict_linear(node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h], 4*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

(node_filesystem_files_free{job="node-exporter",fstype!=""} /
node_filesystem_files{job="node-exporter",fstype!=""} * 100 < 40 and
predict_linear(node_filesystem_files_free{job="node-exporter",fstype!=""}[6h], 24*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

(node_filesystem_files_free{job="node-exporter",fstype!=""} /
node_filesystem_files{job="node-exporter",fstype!=""} * 100 < 20 and
predict_linear(node_filesystem_files_free{job="node-exporter",fstype!=""}[6h], 4*60*60) < 0 and
node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

I'll prettify the slowest query for you using VictoriaMetrics' query formatting endpoint.

 prettify_query

Simple, Reliable, Efficient Monitoring victoriametrics.com

Let's work with the first one. Please prettify it

I'll prettify the slowest query for you using VictoriaMetrics' query formatting endpoint.

Here's the prettified version of your slowest query:

The prettified version makes the query structure much clearer:

 prettify_query

(
 (
 (
 (
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}
 /
 node_filesystem_size_bytes{job="node-exporter",fstype!=""}
)
 *
 100
)
 <
 15
)
 and
 (
 predict_linear(
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h],
 (4 * 60) * 60
)
 <
 0
)
)
 and
(node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

promql

 . . .

victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Let's work with the first one. Please prettify it

I'll prettify the slowest query for you using VictoriaMetrics' query formatting endpoint.

Here's the prettified version of your slowest query:

The prettified version makes the query structure much clearer:

 prettify_query

(
 (
 (
 (
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}
 /
 node_filesystem_size_bytes{job="node-exporter",fstype!=""}
)
 *
 100
)
 <
 15
)
 and
 (
 predict_linear(
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h],
 (4 * 60) * 60
)
 <
 0
)
)
 and
(node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

promql

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

now explain me this query

The prettified version makes the query structure much clearer:
1. Main condition: Filesystem usage > 85% (less than 15% available)
2. Prediction condition: Linear prediction suggests the filesystem will be full within 4 hours (14,400 seconds)
3. Safety condition: Filesystem is not read-only

This query is designed to alert when a filesystem is both critically low on space AND predicted to run out completely
within 4 hours based on the current trend.

(
 (
 (
 (
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}
 /
 node_filesystem_size_bytes{job="node-exporter",fstype!=""}
)
 *
 100
)
 <
 15
)
 and
 (
 predict_linear(
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h],
 (4 * 60) * 60
)
 <
 0
)
)
 and
(node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

promql

Simple, Reliable, Efficient Monitoring victoriametrics.com

now explain me this query

The prettified version makes the query structure much clearer:
1. Main condition: Filesystem usage > 85% (less than 15% available)
2. Prediction condition: Linear prediction suggests the filesystem will be full within 4 hours (14,400 seconds)
3. Safety condition: Filesystem is not read-only

This query is designed to alert when a filesystem is both critically low on space AND predicted to run out completely
within 4 hours based on the current trend.

(
 (
 (
 (
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}
 /
 node_filesystem_size_bytes{job="node-exporter",fstype!=""}
)
 *
 100
)
 <
 15
)
 and
 (
 predict_linear(
 node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h],
 (4 * 60) * 60
)
 <
 0
)
)
 and
(node_filesystem_readonly{job="node-exporter",fstype!=""} == 0)

promql

 explain_query

Simple, Reliable, Efficient Monitoring victoriametrics.com

now explain me this query

What This Query Does
This query identifies filesystems that are critically low on disk space AND predicted to run out completely within 4
hours. It's a proactive alerting rule for preventing disk space exhaustion.

Step-by-Step Breakdown

1. Current Usage Check (First Condition)

What it does:
● node_filesystem_avail_bytes: Available space in bytes (space non-root users can use)
● node_filesystem_size_bytes: Total filesystem size in bytes
● Division: Calculates the ratio of available space to total space
● Multiply by 100: Converts to percentage
● < 15: Finds filesystems with less than 15% free space

Filters applied:
● job="node-exporter": Only data from Node Exporter
● fstype!="": Excludes entries without filesystem type (filters out pseudo-filesystems)

2. Future Prediction Check (Second Condition)

What it does:

 explain_query

(node_filesystem_avail_bytes{job="node-exporter",fstype!=""} / node_filesystem_size_bytes{job="node-exporter",fstype!=""}) * 100 < 15 promql

predict_linear(node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h], (4 * 60) * 60) < 0 promql

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

What it does:
● node_filesystem_avail_bytes: Available space in bytes (space non-root users can use)
● node_filesystem_size_bytes: Total filesystem size in bytes
● Division: Calculates the ratio of available space to total space
● Multiply by 100: Converts to percentage
● < 15: Finds filesystems with less than 15% free space

Filters applied:
● job="node-exporter": Only data from Node Exporter
● fstype!="": Excludes entries without filesystem type (filters out pseudo-filesystems)

2. Future Prediction Check (Second Condition)

What it does:
● predict_linear(): Uses linear regression to predict future values
● [6h]: Analyzes the last 6 hours of data to establish the trend
● (4 * 60) * 60 = 14,400 seconds: Predicts the value 4 hours into the future
● < 0: Checks if the predicted available space will be negative (completely full)

How prediction works:
● Looks at how disk space has been decreasing over the past 6 hours
● Extrapolates this trend 4 hours into the future
● If the trend suggests 0 or negative bytes available, it triggers

3. Read-Only Filter (Third Condition)

What it does:
● node_filesystem_readonly: Indicates if filesystem is mounted read-only (1) or read-write (0)
● == 0: Only includes read-write filesystems
● Why this matters: No point alerting on read-only filesystems since you can't free up space on them

predict_linear(node_filesystem_avail_bytes{job="node-exporter",fstype!=""}[6h], (4 * 60) * 60) < 0 promql

 . . .

node_filesystem_readonly{job="node-exporter",fstype!=""} == 0 promql

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Extrapolates this trend 4 hours into the future
● If the trend suggests 0 or negative bytes available, it triggers

3. Read-Only Filter (Third Condition)

What it does:
● node_filesystem_readonly: Indicates if filesystem is mounted read-only (1) or read-write (0)
● == 0: Only includes read-write filesystems
● Why this matters: No point alerting on read-only filesystems since you can't free up space on them

Combined Logic
The query uses AND operators, so ALL three conditions must be true:

Why This Query is Slow
1. predict_linear() function: Computationally expensive as it performs linear regression analysis
2. 6-hour lookback window: Must analyze 6 hours of historical data for each filesystem
3. Multiple metric queries: Three different metrics with filtering
4. Label matching: Complex filtering across multiple label dimensions

Practical Use Case
This would typically fire alerts like:

● "Filesystem /var/log on server-01 is 12% full and predicted to be completely full in 4 hours based on current usage
trends"

This gives administrators time to take preventive action before the disk actually fills up, which is much better than alerting
only when the disk is already 95% full.

node_filesystem_readonly{job="node-exporter",fstype!=""} == 0 promql

(Current free space < 15%)

AND

(Predicted to be full in 4 hours)

AND

(Filesystem is writable)

{
 "functions_info": {
 "predict_linear": {
 "name": "predict_linear",
 "description": "`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds
in the future using\nlinear interpolation over [raw samples](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#raw-samples) on the
given lookbehind window `d`.\nThe predicted value is calculated individually per each time series returned from the given
[series_selector](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#filtering).\nThis function is supported by PromQL.\nSee also
[range_linear_regression](#range_linear_regression).",
 "category": "Rollup functions"
 }
 },
 "metrics_info": {
 "node_filesystem_avail_bytes": {
 "group": "node-exporter",
 "name": "node_filesystem_avail_bytes",
 "help": "Filesystem space available to non-root users in bytes.",
 "type": "gauge",
 "labels": ["device", "device_error", "fstype", "mountpoint"]
 },
 "node_filesystem_readonly": { "group": "node-exporter", "name": "node_filesystem_readonly", "help": "Filesystem read-only status.", "type":
"gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] },
 "node_filesystem_size_bytes": { "group": "node-exporter", "name": "node_filesystem_size_bytes", "help": "Filesystem size in bytes.",
"type": "gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] }
 },
 "syntax_tree": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,
 "keep_metric_name": false,
 "left": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,

explain_query → response.json

{
 "functions_info": {
 "predict_linear": {
 "name": "predict_linear",
 "description": "`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds
in the future using\nlinear interpolation over [raw samples](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#raw-samples) on the
given lookbehind window `d`.\nThe predicted value is calculated individually per each time series returned from the given
[series_selector](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#filtering).\nThis function is supported by PromQL.\nSee also
[range_linear_regression](#range_linear_regression).",
 "category": "Rollup functions"
 }
 },
 "metrics_info": {
 "node_filesystem_avail_bytes": {
 "group": "node-exporter",
 "name": "node_filesystem_avail_bytes",
 "help": "Filesystem space available to non-root users in bytes.",
 "type": "gauge",
 "labels": ["device", "device_error", "fstype", "mountpoint"]
 },
 "node_filesystem_readonly": { "group": "node-exporter", "name": "node_filesystem_readonly", "help": "Filesystem read-only status.", "type":
"gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] },
 "node_filesystem_size_bytes": { "group": "node-exporter", "name": "node_filesystem_size_bytes", "help": "Filesystem size in bytes.",
"type": "gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] }
 },
 "syntax_tree": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,
 "keep_metric_name": false,
 "left": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,

explain_query → response.json

{
 "functions_info": {
 "predict_linear": {
 "name": "predict_linear",
 "description": "`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds
in the future using\nlinear interpolation over [raw samples](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#raw-samples) on the
given lookbehind window `d`.\nThe predicted value is calculated individually per each time series returned from the given
[series_selector](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#filtering).\nThis function is supported by PromQL.\nSee also
[range_linear_regression](#range_linear_regression).",
 "category": "Rollup functions"
 }
 },
 "metrics_info": {
 "node_filesystem_avail_bytes": {
 "group": "node-exporter",
 "name": "node_filesystem_avail_bytes",
 "help": "Filesystem space available to non-root users in bytes.",
 "type": "gauge",
 "labels": ["device", "device_error", "fstype", "mountpoint"]
 },
 "node_filesystem_readonly": { "group": "node-exporter", "name": "node_filesystem_readonly", "help": "Filesystem read-only status.", "type":
"gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] },
 "node_filesystem_size_bytes": { "group": "node-exporter", "name": "node_filesystem_size_bytes", "help": "Filesystem size in bytes.",
"type": "gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] }
 },
 "syntax_tree": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,
 "keep_metric_name": false,
 "left": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,

explain_query → response.json

{
 "functions_info": {
 "predict_linear": {
 "name": "predict_linear",
 "description": "`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds
in the future using\nlinear interpolation over [raw samples](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#raw-samples) on the
given lookbehind window `d`.\nThe predicted value is calculated individually per each time series returned from the given
[series_selector](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#filtering).\nThis function is supported by PromQL.\nSee also
[range_linear_regression](#range_linear_regression).",
 "category": "Rollup functions"
 }
 },
 "metrics_info": {
 "node_filesystem_avail_bytes": {
 "group": "node-exporter",
 "name": "node_filesystem_avail_bytes",
 "help": "Filesystem space available to non-root users in bytes.",
 "type": "gauge",
 "labels": ["device", "device_error", "fstype", "mountpoint"]
 },
 "node_filesystem_readonly": { "group": "node-exporter", "name": "node_filesystem_readonly", "help": "Filesystem read-only status.", "type":
"gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] },
 "node_filesystem_size_bytes": { "group": "node-exporter", "name": "node_filesystem_size_bytes", "help": "Filesystem size in bytes.",
"type": "gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] }
 },
 "syntax_tree": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,
 "keep_metric_name": false,
 "left": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,

explain_query → response.json

 "types_info": {
 "BinaryOpExpr": {
 "name": "Binary operation",
 "description": "BinaryOpExpr represents binary operation such as `+`, `-`, `*`, `/`, etc.",
 "fields": {
 "bool": { "name": "", "description": "Bool indicates whether `bool` modifier is present. For example, `foo \u003ebool bar`",
"data_type": "bool" },
 "group_modifier": { "name": "", "description": "GroupModifier contains modifier such as \"on\" or \"ignoring\".", "data_type":
"ModifierExpr" },
 "join_modifier": { "name": "", "description": "JoinModifier contains modifier such as \"group_left\" or \"group_right\".", "data_type":
"ModifierExpr" },
 "join_modifier_prefix": {
 "name": "",
 "description": "JoinModifierPrefix is an optional prefix to add to labels specified inside group_left() or group_right() lists. The
syntax is `group_left(foo,bar) prefix \"abc\"`",
 "data_type": "StringExpr"
 },
 "keep_metric_names": { "name": "", "description": "If KeepMetricNames is set to true, then the operation should keep metric names.",
"data_type": "bool" },
 "left": { "name": "", "description": "Left contains left arg for the `left op right` expression.", "data_type": "Expr" },
 "op": { "name": "", "description": "Op is the operation itself, i.e. `+`, `-`, `*`, etc.", "data_type": "string" },
 "right": { "name": "", "description": "Right contains right arg for the `left op right` expression.", "data_type": "Expr" }
 }
 },
 "DurationExpr": {
 "name": "Duration",
 "description": "DurationExpr represents a duration, e.g. `5m`, `1h`. Supported suffixes are `s` (seconds), `m` (minutes), `h` (hours),
`d` (days), `w` (weeks), and `y` (years).",
 "fields": { "value": { "name": "", "description": "Value is the duration value as a string, e.g. `5m`, `1h`.", "data_type": "string" } }
 },
 "FuncExpr": {
 "name": "Function",
 "description": "uncExpr represents MetricsQL function such as `foo(...)`",
 "fields": {
 "args": { "name": "", "description": "Arguments of the function, which can be other expressions.", "data_type": "array of Expr" },
 "keep_metric_names": { "name": "", "description": "If KeepMetricNames is set to true, then the function should keep metric names.",
"data_type": "bool" },

explain_query → response.json

{
 "functions_info": {
 "predict_linear": {
 "name": "predict_linear",
 "description": "`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds
in the future using\nlinear interpolation over [raw samples](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#raw-samples) on the
given lookbehind window `d`.\nThe predicted value is calculated individually per each time series returned from the given
[series_selector](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#filtering).\nThis function is supported by PromQL.\nSee also
[range_linear_regression](#range_linear_regression).",
 "category": "Rollup functions"
 }
 },
 "metrics_info": {
 "node_filesystem_avail_bytes": {
 "group": "node-exporter",
 "name": "node_filesystem_avail_bytes",
 "help": "Filesystem space available to non-root users in bytes.",
 "type": "gauge",
 "labels": ["device", "device_error", "fstype", "mountpoint"]
 },
 "node_filesystem_readonly": { "group": "node-exporter", "name": "node_filesystem_readonly", "help": "Filesystem read-only status.", "type":
"gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] },
 "node_filesystem_size_bytes": { "group": "node-exporter", "name": "node_filesystem_size_bytes", "help": "Filesystem size in bytes.",
"type": "gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] }
 },
 "syntax_tree": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,
 "keep_metric_name": false,
 "left": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,

explain_query → response.json

{
 "functions_info": {
 "predict_linear": {
 "name": "predict_linear",
 "description": "`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds
in the future using\nlinear interpolation over [raw samples](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#raw-samples) on the
given lookbehind window `d`.\nThe predicted value is calculated individually per each time series returned from the given
[series_selector](https://docs.victoriametrics.com/victoriametrics/keyconcepts/#filtering).\nThis function is supported by PromQL.\nSee also
[range_linear_regression](#range_linear_regression).",
 "category": "Rollup functions"
 }
 },
 "metrics_info": {
 "node_filesystem_avail_bytes": {
 "group": "node-exporter",
 "name": "node_filesystem_avail_bytes",
 "help": "Filesystem space available to non-root users in bytes.",
 "type": "gauge",
 "labels": ["device", "device_error", "fstype", "mountpoint"]
 },
 "node_filesystem_readonly": { "group": "node-exporter", "name": "node_filesystem_readonly", "help": "Filesystem read-only status.", "type":
"gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] },
 "node_filesystem_size_bytes": { "group": "node-exporter", "name": "node_filesystem_size_bytes", "help": "Filesystem size in bytes.",
"type": "gauge", "labels": ["device", "device_error", "fstype", "mountpoint"] }
 },
 "syntax_tree": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,
 "keep_metric_name": false,
 "left": {
 "bool": false,
 "group_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier": { "args": null, "op": "", "type": "ModifierExpr" },
 "join_modifier_prefix": null,

explain_query → response.json

Simple, Reliable, Efficient Monitoring victoriametrics.com

What it does:
● node_filesystem_readonly: Indicates if filesystem is mounted read-only (1) or read-write (0)
● == 0: Only includes read-write filesystems
● Why this matters: No point alerting on read-only filesystems since you can't free up space on them

Combined Logic
The query uses AND operators, so ALL three conditions must be true:

Why This Query is Slow
1. predict_linear() function: Computationally expensive as it performs linear regression analysis
2. 6-hour lookback window: Must analyze 6 hours of historical data for each filesystem
3. Multiple metric queries: Three different metrics with filtering
4. Label matching: Complex filtering across multiple label dimensions

Practical Use Case
This would typically fire alerts like:

● "Filesystem /var/log on server-01 is 12% full and predicted to be completely full in 4 hours based on current usage
trends"

This gives administrators time to take preventive action before the disk actually fills up, which is much better than alerting
only when the disk is already 95% full.

(Current free space < 15%)

AND

(Predicted to be full in 4 hours)

AND

(Filesystem is writable)

please trace this query

Simple, Reliable, Efficient Monitoring victoriametrics.com

What it does:
● node_filesystem_readonly: Indicates if filesystem is mounted read-only (1) or read-write (0)
● == 0: Only includes read-write filesystems
● Why this matters: No point alerting on read-only filesystems since you can't free up space on them

Combined Logic
The query uses AND operators, so ALL three conditions must be true:

Why This Query is Slow
1. predict_linear() function: Computationally expensive as it performs linear regression analysis
2. 6-hour lookback window: Must analyze 6 hours of historical data for each filesystem
3. Multiple metric queries: Three different metrics with filtering
4. Label matching: Complex filtering across multiple label dimensions

Practical Use Case
This would typically fire alerts like:

● "Filesystem /var/log on server-01 is 12% full and predicted to be completely full in 4 hours based on current usage
trends"

This gives administrators time to take preventive action before the disk actually fills up, which is much better than alerting
only when the disk is already 95% full.

(Current free space < 15%)

AND

(Predicted to be full in 4 hours)

AND

(Filesystem is writable)

please trace this query

I'll trace the execution of this query to show you exactly how VictoriaMetrics processes it step by step.

 query

Simple, Reliable, Efficient Monitoring victoriametrics.com

please trace this query

I'll trace the execution of this query to show you exactly how VictoriaMetrics processes it step by step.

Here's a detailed trace analysis of your query execution:

Query Execution Summary
● Total Time: 217.9ms
● Series Fetched: 3,309 time series
● Result: 0 matching filesystems (none currently meet all criteria)
● Data Scanned: Over 2.1 million samples

Execution Breakdown

1. Read-Only Filesystem Check (21ms)

● Time: 21ms
● Series Found: 1,110 filesystems
● Purpose: Filter out read-only filesystems
● Result: Found 1,110 writable filesystems

2. Current Usage Percentage (75ms)

 query

node_filesystem_readonly{job="node-exporter",fstype!=""} == 0 promql

(node_filesystem_avail_bytes / node_filesystem_size_bytes) * 100 < 15 promql

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Result: Found 1,110 writable filesystems

2. Current Usage Percentage (75ms)

● Time: 75ms
● Series Processed: 733 filesystems
● Data Fetched: 67,816 samples
● Storage Calls: Parallel calls to 2 storage nodes
● Result: Found 733 filesystems with <15% free space

3. Prediction Analysis (113ms) - The Bottleneck

● Time: 113ms (52% of total execution time)
● Series Processed: 733 filesystems
● Lookback Window: 6 hours (21,600 seconds)
● Data Analyzed: 1,244,406 samples over 6 hours
● Storage Impact: Fetched 9,913 blocks from storage
● Linear Regression: Performed on each of 733 time series
● Result: None predicted to be full in 4 hours

Why This Query is Slow
Primary Bottleneck: predict_linear() Function

● 94ms spent on linear regression calculations
● 1.2M+ samples analyzed for trend calculation
● 6-hour lookback requires significant historical data
● No optimization available for predict_linear() function

(node_filesystem_avail_bytes / node_filesystem_size_bytes) * 100 < 15 promql

 . . .

predict_linear(node_filesystem_avail_bytes[6h], 14400) < 0 promql

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Efficient label filtering - used cached metricIDs
● Parallel processing - storage nodes worked simultaneously
● Memory efficient - only 744KB RAM needed for calculations

Performance Metrics
● Samples Scanned: 2,111,040 total
● Blocks Fetched: 25,635 blocks
● Network Efficiency: Good - parallel storage access
● Cache Hit Rate: High - used tag filters cache effectively

Final Result
Currently, no filesystems meet all three criteria:

●✅ 1,110 filesystems are writable
●✅ 733 filesystems have <15% free space
●❌ 0 filesystems are predicted to be full in 4 hours

The prediction algorithm determined that none of the low-space filesystems have a consumption trend steep enough to
exhaust space within 4 hours, which is actually good news for your infrastructure!

show me the graph for this query for last 24 hours

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Efficient label filtering - used cached metricIDs
● Parallel processing - storage nodes worked simultaneously
● Memory efficient - only 744KB RAM needed for calculations

Performance Metrics
● Samples Scanned: 2,111,040 total
● Blocks Fetched: 25,635 blocks
● Network Efficiency: Good - parallel storage access
● Cache Hit Rate: High - used tag filters cache effectively

Final Result
Currently, no filesystems meet all three criteria:

●✅ 1,110 filesystems are writable
●✅ 733 filesystems have <15% free space
●❌ 0 filesystems are predicted to be full in 4 hours

The prediction algorithm determined that none of the low-space filesystems have a consumption trend steep enough to
exhaust space within 4 hours, which is actually good news for your infrastructure!

show me the graph for this query for last 24 hours

I'll fetch the data for this query over the last 24 hours and create a graph for you.

 query_range

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Efficient label filtering - used cached metricIDs
● Parallel processing - storage nodes worked simultaneously
● Memory efficient - only 744KB RAM needed for calculations

Performance Metrics
● Samples Scanned: 2,111,040 total
● Blocks Fetched: 25,635 blocks
● Network Efficiency: Good - parallel storage access
● Cache Hit Rate: High - used tag filters cache effectively

Final Result
Currently, no filesystems meet all three criteria:

●✅ 1,110 filesystems are writable
●✅ 733 filesystems have <15% free space
●❌ 0 filesystems are predicted to be full in 4 hours

The prediction algorithm determined that none of the low-space filesystems have a consumption trend steep enough to
exhaust space within 4 hours, which is actually good news for your infrastructure!

show me the graph for this query for last 24 hours

I'll fetch the data for this query over the last 24 hours and create a graph for you.

The query returned no results over the past 24 hours, which means no filesystems met all three criteria simultaneously.
This is actually good news! Let me create a more informative dashboard by breaking down the query components to show
you what's happening with your filesystem monitoring.

 query_range

 query_range

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Efficient label filtering - used cached metricIDs
● Parallel processing - storage nodes worked simultaneously
● Memory efficient - only 744KB RAM needed for calculations

Performance Metrics
● Samples Scanned: 2,111,040 total
● Blocks Fetched: 25,635 blocks
● Network Efficiency: Good - parallel storage access
● Cache Hit Rate: High - used tag filters cache effectively

Final Result
Currently, no filesystems meet all three criteria:

●✅ 1,110 filesystems are writable
●✅ 733 filesystems have <15% free space
●❌ 0 filesystems are predicted to be full in 4 hours

The prediction algorithm determined that none of the low-space filesystems have a consumption trend steep enough to
exhaust space within 4 hours, which is actually good news for your infrastructure!

show me the graph for this query for last 24 hours

I'll fetch the data for this query over the last 24 hours and create a graph for you.

The query returned no results over the past 24 hours, which means no filesystems met all three criteria simultaneously.
This is actually good news! Let me create a more informative dashboard by breaking down the query components to show
you what's happening with your filesystem monitoring.

 query_range

 query_range

 query_range

Simple, Reliable, Efficient Monitoring victoriametrics.com

● Efficient label filtering - used cached metricIDs
● Parallel processing - storage nodes worked simultaneously
● Memory efficient - only 744KB RAM needed for calculations

Performance Metrics
● Samples Scanned: 2,111,040 total
● Blocks Fetched: 25,635 blocks
● Network Efficiency: Good - parallel storage access
● Cache Hit Rate: High - used tag filters cache effectively

Final Result
Currently, no filesystems meet all three criteria:

●✅ 1,110 filesystems are writable
●✅ 733 filesystems have <15% free space
●❌ 0 filesystems are predicted to be full in 4 hours

The prediction algorithm determined that none of the low-space filesystems have a consumption trend steep enough to
exhaust space within 4 hours, which is actually good news for your infrastructure!

show me the graph for this query for last 24 hours

I'll fetch the data for this query over the last 24 hours and create a graph for you.

The query returned no results over the past 24 hours, which means no filesystems met all three criteria simultaneously.
This is actually good news! Let me create a more informative dashboard by breaking down the query components to show
you what's happening with your filesystem monitoring.

 query_range

 query_range

 query_range

 query_range

Simple, Reliable, Efficient Monitoring victoriametrics.com

show me the graph for this query for last 24 hours

I'll fetch the data for this query over the last 24 hours and create a graph for you.

The query returned no results over the past 24 hours, which means no filesystems met all three criteria simultaneously.
This is actually good news! Let me create a more informative dashboard by breaking down the query components to show
you what's happening with your filesystem monitoring.

Perfect! Now I have filesystem data to create a meaningful visualization. I can see the filesystem usage patterns over the
past few hours. Let me create an interactive dashboard showing the filesystem monitoring data.

I've created a comprehensive filesystem monitoring dashboard that visualizes your query results and explains why no
alerts were triggered. Here are the key findings:

 query_range

 query_range

 query_range

 query_range

Filesystem Monitoring Dashboard
Interactive artifact

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

tsdb_status (cardinality explorer) / metric_statistic

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

tsdb_status (cardinality explorer) / metric_statistic

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

tsdb_status (cardinality explorer) / metric_statistic

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

Give me the top metric names by cardinality

Simple, Reliable, Efficient Monitoring victoriametrics.com

I'll get the top metric names by cardinality from your VictoriaMetrics instance.

 tsdb_status

Give me the top metric names by cardinality

Simple, Reliable, Efficient Monitoring victoriametrics.com

I'll get the top metric names by cardinality from your VictoriaMetrics instance.

Here are the top 20 metric names by cardinality in your VictoriaMetrics instance:

Key Observations:

 tsdb_status

Give me the top metric names by cardinality

Rank Metric Name Series Count Requests Count

1 etcd_request_duration_seconds_bucket 11,304 2,658,477

2 apiserver_request_duration_seconds_bucket 10,920 3,606,927

3 github_downloads_total 8,387 4,181,762

4 apiserver_request_sli_duration_seconds_bucket 6,908 1,751,128

… … … …

20 kube_node_status_condition 755 590,471

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Key Observations:
● Total series across all metrics: 249,452
● Top contributors: The etcd and apiserver duration bucket metrics have the highest cardinality, likely due to multiple

label combinations (different endpoints, methods, status codes, etc.)
● High query activity: go_sched_latencies_seconds_bucket has extremely high request count (381M+) despite

moderate cardinality
● Bucket metrics dominate: Most high-cardinality metrics are histogram buckets (_bucket suffix), which is typical as

they create multiple series per metric
The histogram bucket metrics typically have high cardinality because they create separate time series for each bucket
boundary (le label) combined with other dimensional labels.

Which of them are never queried?

14 apiserver_watch_cache_read_wait_seconds_bucket 1,750 355,694

15 volume_operation_total_seconds_bucket 1,750 96,335

16 kube_pod_tolerations 1,653 4,562,872

17 go_gc_pauses_seconds_bucket 1,517 446,691

18 go_sched_latencies_seconds_bucket 1,517 381,902,240

19 csi_operations_seconds_bucket 1,498 109,372

20 kube_node_status_condition 755 590,471

Simple, Reliable, Efficient Monitoring victoriametrics.com

Key Observations:
● Total series across all metrics: 249,452
● Top contributors: The etcd and apiserver duration bucket metrics have the highest cardinality, likely due to multiple

label combinations (different endpoints, methods, status codes, etc.)
● High query activity: go_sched_latencies_seconds_bucket has extremely high request count (381M+) despite

moderate cardinality
● Bucket metrics dominate: Most high-cardinality metrics are histogram buckets (_bucket suffix), which is typical as

they create multiple series per metric
The histogram bucket metrics typically have high cardinality because they create separate time series for each bucket
boundary (le label) combined with other dimensional labels.

Which of them are never queried?

14 apiserver_watch_cache_read_wait_seconds_bucket 1,750 355,694

15 volume_operation_total_seconds_bucket 1,750 96,335

16 kube_pod_tolerations 1,653 4,562,872

17 go_gc_pauses_seconds_bucket 1,517 446,691

18 go_sched_latencies_seconds_bucket 1,517 381,902,240

19 csi_operations_seconds_bucket 1,498 109,372

20 kube_node_status_condition 755 590,471

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

 metric_stastistics

Simple, Reliable, Efficient Monitoring victoriametrics.com

Which of them are never queried?

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

Based on the query statistics, all of the top 20 metrics by cardinality are actively being used in queries. None of them
have zero query requests.

However, I did find some completely unused metrics (0 queries) in your system, though these are not among the
high-cardinality ones:

Completely unused metrics (0 queries):
● apiserver_nodeport_repair_reconcile_errors_total
● kube_pod_init_container_status_last_terminated_reason
● vmanomaly_reader_response_parsing_seconds_created

Key findings about your top cardinality metrics:
● Most actively queried: go_sched_latencies_seconds_bucket with 381M+ queries
● Least queried among top 20: volume_operation_total_seconds_bucket with 96,335 queries
● All have substantial usage: Even the least queried high-cardinality metric has nearly 100k queries

This actually indicates a healthy situation - your high-cardinality metrics are being actively used, meaning they're
providing value and not just consuming storage space unnecessarily.
If you're concerned about storage costs, you might want to focus on:

● Retention policies for less frequently queried metrics
● Downsampling strategies for histogram buckets that don't need full granularity
● Label optimization to reduce unnecessary cardinality combinations

 metric_stastistics

Simple, Reliable, Efficient Monitoring victoriametrics.com

let's create relabeling rule to remove these
completely unused metrics

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

Based on the query statistics, all of the top 20 metrics by cardinality are actively being used in queries. None of them
have zero query requests.

However, I did find some completely unused metrics (0 queries) in your system, though these are not among the
high-cardinality ones:

Completely unused metrics (0 queries):
● apiserver_nodeport_repair_reconcile_errors_total
● kube_pod_init_container_status_last_terminated_reason
● vmanomaly_reader_response_parsing_seconds_created

Key findings about your top cardinality metrics:
● Most actively queried: go_sched_latencies_seconds_bucket with 381M+ queries
● Least queried among top 20: volume_operation_total_seconds_bucket with 96,335 queries
● All have substantial usage: Even the least queried high-cardinality metric has nearly 100k queries

This actually indicates a healthy situation - your high-cardinality metrics are being actively used, meaning they're
providing value and not just consuming storage space unnecessarily.
If you're concerned about storage costs, you might want to focus on:

● Retention policies for less frequently queried metrics
● Downsampling strategies for histogram buckets that don't need full granularity
● Label optimization to reduce unnecessary cardinality combinations

Simple, Reliable, Efficient Monitoring victoriametrics.com

ok, let's create relabeling rule to drop all completely
unused metrics

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

Based on the query statistics, all of the top 20 metrics by cardinality are actively being used in queries. None of them
have zero query requests.

However, I did find some completely unused metrics (0 queries) in your system, though these are not among the
high-cardinality ones:

Completely unused metrics (0 queries):
● apiserver_nodeport_repair_reconcile_errors_total
● kube_pod_init_container_status_last_terminated_reason
● vmanomaly_reader_response_parsing_seconds_created

Key findings about your top cardinality metrics:
● Most actively queried: go_sched_latencies_seconds_bucket with 381M+ queries
● Least queried among top 20: volume_operation_total_seconds_bucket with 96,335 queries
● All have substantial usage: Even the least queried high-cardinality metric has nearly 100k queries

This actually indicates a healthy situation - your high-cardinality metrics are being actively used, meaning they're
providing value and not just consuming storage space unnecessarily.
If you're concerned about storage costs, you might want to focus on:

● Retention policies for less frequently queried metrics
● Downsampling strategies for histogram buckets that don't need full granularity
● Label optimization to reduce unnecessary cardinality combinations

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

 metric_stastistics

Simple, Reliable, Efficient Monitoring victoriametrics.com

ok, let's create relabeling rule to drop all completely
unused metrics

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

Based on the query statistics, all of the top 20 metrics by cardinality are actively being used in queries. None of them
have zero query requests.

However, I did find some completely unused metrics (0 queries) in your system, though these are not among the
high-cardinality ones:

Completely unused metrics (0 queries):
● apiserver_nodeport_repair_reconcile_errors_total
● kube_pod_init_container_status_last_terminated_reason
● vmanomaly_reader_response_parsing_seconds_created

Key findings about your top cardinality metrics:
● Most actively queried: go_sched_latencies_seconds_bucket with 381M+ queries
● Least queried among top 20: volume_operation_total_seconds_bucket with 96,335 queries
● All have substantial usage: Even the least queried high-cardinality metric has nearly 100k queries

This actually indicates a healthy situation - your high-cardinality metrics are being actively used, meaning they're
providing value and not just consuming storage space unnecessarily.
If you're concerned about storage costs, you might want to focus on:

● Retention policies for less frequently queried metrics
● Downsampling strategies for histogram buckets that don't need full granularity
● Label optimization to reduce unnecessary cardinality combinations

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

Perfect! I found several completely unused metrics (0 queries). Let me create relabeling rules to drop them. Here are the
metrics with exactly 0 queries:

 metric_stastistics

Relabeling Rules To Drop Unused Metrics
Code

Simple, Reliable, Efficient Monitoring victoriametrics.com

ok, let's create relabeling rule to drop all completely
unused metrics

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

Based on the query statistics, all of the top 20 metrics by cardinality are actively being used in queries. None of them
have zero query requests.

However, I did find some completely unused metrics (0 queries) in your system, though these are not among the
high-cardinality ones:

Completely unused metrics (0 queries):
● apiserver_nodeport_repair_reconcile_errors_total
● kube_pod_init_container_status_last_terminated_reason
● vmanomaly_reader_response_parsing_seconds_created

Key findings about your top cardinality metrics:
● Most actively queried: go_sched_latencies_seconds_bucket with 381M+ queries
● Least queried among top 20: volume_operation_total_seconds_bucket with 96,335 queries
● All have substantial usage: Even the least queried high-cardinality metric has nearly 100k queries

This actually indicates a healthy situation - your high-cardinality metrics are being actively used, meaning they're
providing value and not just consuming storage space unnecessarily.
If you're concerned about storage costs, you might want to focus on:

● Retention policies for less frequently queried metrics
● Downsampling strategies for histogram buckets that don't need full granularity
● Label optimization to reduce unnecessary cardinality combinations

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

Perfect! I found several completely unused metrics (0 queries). Let me create relabeling rules to drop them. Here are the
metrics with exactly 0 queries:

Now let me test these relabeling rules using the debug tool to ensure they work correctly:

 metric_stastistics

Relabeling Rules To Drop Unused Metrics
Code

 metric_relabel_debug

Simple, Reliable, Efficient Monitoring victoriametrics.com

ok, let's create relabeling rule to drop all completely
unused metrics

I can see from the data that all of the top 20 metrics by cardinality have been used in queries (they all have non-zero
request counts). However, let me check for metrics that are rarely or never queried to give you a better picture.

Based on the query statistics, all of the top 20 metrics by cardinality are actively being used in queries. None of them
have zero query requests.

However, I did find some completely unused metrics (0 queries) in your system, though these are not among the
high-cardinality ones:

Completely unused metrics (0 queries):
● apiserver_nodeport_repair_reconcile_errors_total
● kube_pod_init_container_status_last_terminated_reason
● vmanomaly_reader_response_parsing_seconds_created

Key findings about your top cardinality metrics:
● Most actively queried: go_sched_latencies_seconds_bucket with 381M+ queries
● Least queried among top 20: volume_operation_total_seconds_bucket with 96,335 queries
● All have substantial usage: Even the least queried high-cardinality metric has nearly 100k queries

This actually indicates a healthy situation - your high-cardinality metrics are being actively used, meaning they're
providing value and not just consuming storage space unnecessarily.
If you're concerned about storage costs, you might want to focus on:

● Retention policies for less frequently queried metrics
● Downsampling strategies for histogram buckets that don't need full granularity
● Label optimization to reduce unnecessary cardinality combinations

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

Perfect! I found several completely unused metrics (0 queries). Let me create relabeling rules to drop them. Here are the
metrics with exactly 0 queries:

Now let me test these relabeling rules using the debug tool to ensure they work correctly:

Let me test another unused metric to verify the pattern works:

 metric_stastistics

Relabeling Rules To Drop Unused Metrics
Code

 metric_relabel_debug

 metric_relabel_debug

Simple, Reliable, Efficient Monitoring victoriametrics.com

ok, let's create relabeling rule to drop all completely
unused metrics

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

Perfect! I found several completely unused metrics (0 queries). Let me create relabeling rules to drop them. Here are the
metrics with exactly 0 queries:

Now let me test these relabeling rules using the debug tool to ensure they work correctly:

Let me test another unused metric to verify the pattern works:

Perfect! Now let me test that we don't accidentally drop metrics that should be kept:

 metric_stastistics

Relabeling Rules To Drop Unused Metrics
Code

 metric_relabel_debug

 metric_relabel_debug

 metric_relabel_debug

Simple, Reliable, Efficient Monitoring victoriametrics.com

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

Perfect! I found several completely unused metrics (0 queries). Let me create relabeling rules to drop them. Here are the
metrics with exactly 0 queries:

Now let me test these relabeling rules using the debug tool to ensure they work correctly:

Let me test another unused metric to verify the pattern works:

Perfect! Now let me test that we don't accidentally drop metrics that should be kept:

Excellent! The relabeling rules are working perfectly. Here's a summary:

✅ Validation Results

 metric_stastistics

Relabeling Rules To Drop Unused Metrics
Code

 metric_relabel_debug

 metric_relabel_debug

 metric_relabel_debug

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

tsdb_status (cardinality explorer) / metric_statistic

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

rules / alerts / test_rules

active_queries / top_queries

query / query_range

tsdb_status (cardinality explorer) / metric_statistic

metrics_relabel_debug / downsampling_filters_debug / retention_filters_debug

explain_query / prettify_query

Available tools

metrics / labels / label_values / series

tenants (for cluster)

documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to write data to VictoriaMetrics Cloud?

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to write data to VictoriaMetrics Cloud?

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

 Thinking about writing metrics to VictoriaMetrics Cloud platform

 documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to write data to VictoriaMetrics Cloud?

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

 Thinking about writing metrics to VictoriaMetrics Cloud platform

 documentation

 Based on the documentation search results, i can see information about various ways to…

 documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to write data to VictoriaMetrics Cloud?

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

 Thinking about writing metrics to VictoriaMetrics Cloud platform

 documentation

 Based on the documentation search results, i can see information about various ways to…

 documentation

 Now i have comprehensive information about writing data to VictoriaMetrics Cloud.

 documentation

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to write data to VictoriaMetrics Cloud?

Great idea! Let me first get a complete list of completely unused metrics (0 queries), then we'll create relabeling rules to
drop them.

Based on the documentation, here's a comprehensive guide on how to write data to VictoriaMetrics Cloud:

 Thinking about writing metrics to VictoriaMetrics Cloud platform

 documentation

 Based on the documentation search results, i can see information about various ways to…

 documentation

 Now i have comprehensive information about writing data to VictoriaMetrics Cloud.

 documentation

 Synthesized comprehensive strategy for VictoriaMetrics Cloud data writing.

 . . .

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://github.com/modelcontextprotocol/modelcontextprotocol/issues/204

https://github.com/modelcontextprotocol/modelcontextprotocol/issues/204

Integration with
VictoriaMetrics Cloud

victoriametrics.comSimple, Reliable, Efficient Monitoring

mcp-victoriametrics + VictoriaMetrics Cloud

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://docs.victoriametrics.com/victoriametrics-cloud/api/

https://docs.victoriametrics.com/victoriametrics-cloud/api/

Simple, Reliable, Efficient Monitoring victoriametrics.com

How to set up in your client ?

{
 "mcpServers": {
 "VictoriaMetrics": {
 "command": "/path/to/mcp-victoriametrics",
 "env": {
 "VMC_API_KEY": "<YOUR_CLOUD_API_KEY>"
 }
 }
 }
}

Claude → claude_desktop_config.json

Simple, Reliable, Efficient Monitoring victoriametrics.com

regions supported regions

tiers supported tier for VM instances

access_tokens access tokens of VM instance

rule_file content of specific alerting or recording rules file of VM instance

Additional cloud-specific tools

cloud_providers supported cloud providers

deployments available VM instances

rule_filenames alerting and recording rules filenames of VM instance

Future plans

victoriametrics.comSimple, Reliable, Efficient Monitoring

Roadmap

Simple, Reliable, Efficient Monitoring victoriametrics.com

Support tool for query execution stats analysis

Add extra knowledge to the server

Implement multi-instance version

Support tools for VMAgent API

Support Alertmanager API

Support metrics metadata

Improve tools for VMAlert API

mcp-victorialogs

victoriametrics.comSimple, Reliable, Efficient Monitoring

mcp-victorialogs

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://github.com/VictoriaMetrics-Community/mcp-victorialogs

https://github.com/VictoriaMetrics-Community/mcp-victorialogs

Simple, Reliable, Efficient Monitoring victoriametrics.com

flags non-default flags of the VictoriaLogs instance

hits number of matching log entries grouped by buckets

query query logs with LogsQL

stream_field_names / stream_field_values list field names or values for specified log stream

stream_ids / streams list stream IDs or streams for specified query

Available tools

field_names / field_values list field names or values for specified query

facets most frequent values per each log field

documentation search in embedded VictoriaLogs documentation

stats_query / stats_query_range instant or range stats query (for alerting)

Before the end

victoriametrics.comSimple, Reliable, Efficient Monitoring

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Quality of responses strongly depends on:

LLM (count of parameters, context size, thinking / reasoning option, etc…)

Client (how well it works with the MCP tools)

Wording

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Quality of responses strongly depends on:

LLM (count of parameters, context size, thinking / reasoning option, etc…)

Client (how well it works with the MCP tools)

Wording

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Quality of responses strongly depends on:

LLM (count of parameters, context size, thinking / reasoning option, etc…)

Client (how well it works with the MCP tools)

Wording

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Power of LLMs in the keeping context, move step-by-step and combine different

tools

If you know the available capabilities (tools), terms and keywords and form

queries based on them rather than using abstract queries - the results will be

more accurate

Be tolerant of LLM “hallucinations”, try different approaches to improve your

results

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Power of LLMs in the keeping context, move step-by-step and combine different

tools

If you know the available capabilities (tools), terms and keywords and form

queries based on them rather than using abstract queries - the results will be

more accurate

Be tolerant of LLM “hallucinations”, try different approaches to improve your

results

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

Power of LLMs in the keeping context, move step-by-step and combine different

tools

If you know the available capabilities (tools), terms and keywords and form

queries based on them rather than using abstract queries - the results will be

more accurate

Be tolerant of LLM “hallucinations”, try different approaches to improve your

results

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

It works much accurate with known metrics from OpenSource software,

because LLMs already has context about them in internal knowledge

Combining the capabilities of different MCP servers from the same domain (for

example mcp-victoriametrics + mcp-victorialogs + mcp for k8s) should enhance

the capabilities and open up new complex scenarios

you should help LLMs with plan/context in abstract queries

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

It works much accurate with known metrics from OpenSource software,

because LLMs already has context about them in internal knowledge

Combining the capabilities of different MCP servers from the same domain (for

example mcp-victoriametrics + mcp-victorialogs + mcp for k8s) should enhance

the capabilities and open up new complex scenarios

you should help LLMs with plan/context in abstract queries

How to improve answers

Simple, Reliable, Efficient Monitoring victoriametrics.com

It works much accurate with known metrics from OpenSource software,

because LLMs already has context about them in internal knowledge

Combining the capabilities of different MCP servers from the same domain (for

example mcp-victoriametrics + mcp-victorialogs + mcp for k8s) should enhance

the capabilities and open up new complex scenarios

you should help LLMs with plan/context in abstract queries

Can AI/ML Guide Observability?

Simple, Reliable, Efficient Monitoring victoriametrics.com

https://www.youtube.com/watch?v=7t0ZMhX7OIY

https://www.youtube.com/watch?v=7t0ZMhX7OIY

VictoriaMetrics
Cloud
Thank you for listening
marshalov@victoriametrics.com

victoriametrics.com

mailto:marshalov@victoriametrics.com

