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The vast majority of proposed production engineering uses
of Machine Learning (ML) will never work. They are
structurally unsuited to their intended purposes. There are
many key problem domains where SREs want to apply ML
but most of them do not have the right characteristics to be
feasible in the way that we hope. After addressing the most
common proposed uses of ML for production engineering
and explaining why they won't work, several options will be
considered, including approaches to evaluating proposed
applications of ML for feasibility. ML cannot solve most of
the problems most people want it to, but it can solve
some problems. Probably.



PPPPP

» Question 1

Hey Al,
how is my infrastructure today?



» Question 1: typical Al’s plan

Hey Al,

how is my
iInfrastructure
today?

Al’s plan:

1.

> @ D

Get raised alerts.
Get top nodes by CPU, memory, disk pressure.
Get the last few error logs.

If you are lucky: attempt to discover metrics about errors or
latency, pick a few of them and make a couple of queries in
hope they will show something.

Conclude.

The problem:

Al does not have a context (what is important for you), and does not

have any means to surface infrastructure level issues easily, apart
from alerts.



» Question 1: Netdata’s Answer

Netdata provides 2 tools, that require from the LLM to know
just the time-window of interest:

1. find _anomalous metrics

He AI Netdata trains 18 ML models per metric, at the edge, providing
y ) ~54 hours of rolling behavioral patterns.
" Anomaly detection occurs in real-time during data collection. A
how is my e 9
data point is flagged as anomalous only when all 18 models
i nfrastru Ctu re reach consensus. The result is ordered by anomaly rate.
tod ay? 2. find_correlated_metrics

Score metrics based on how much they changed between two
time-windows, using either KS2 or Volume.

Both of these tools return an ordered list of metrics, and the LLM
can select how many it wants.



Design of ML in Netdata



» Netdata ML Anomaly Detection Overview

Netdata trains
ML at the edge,
on each server!

The Challenge

Netdata monitors 3k - 10k metrics per server
Collects metrics in real-time, per-second

The Goal
e Detect genuine anomalies without drowning in false positives
e No manual configuration or training required
e No more than 2-5% CPU utilization of a single core
e No more than a few KiB per metric

The Solution

Unsupervised k-means clustering (k=2)

18 models per metric trained on different time windows
Consensus mechanism: ALL models must agree
Min-max normalized anomaly scoring



» How Individual Model Detection Works

Real-time
anomaly
detection!

Training a new model (every 3 hours)

Take 6 hours of high-resolution metric data (per-second)
Create feature vectors (differenced, smoothed, 5 lags)
K-means clustering finds 2 behavior patterns

Record min and max distances from cluster centers

Anomaly Detection per model (real-time)

e Collect raw metric value

e Apply differencing = smoothing — lagging to create 6D feature vector
e (Calculate average Euclidean distance to the 2 cluster centers

e Anomaly Score = 100 x (distance - min) / (max - min)

e |[f score =99 — Model says "anomalous"

Key: This is not a percentile! It's normalized distance relative to
training extremes.



» The Consensus Mechanism

18 models
consensus!

18 Models Per Metric

e Each trained on 6-hour windows
e Staggered at 3-hour intervals
e Covers ~57 hours of patterns

For a point to be anomalous

e Model 1 (trained on hours 0-6): v Anomalous
e Model 2 (trained on hours 3-9): v Anomalous
e Model 3 (trained on hours 6-12): v Anomalous
e ... ALL 18 models must agree!

Result: Random false positives virtually eliminated!



» Why This Achieves Ultra-Low False Positives

e Self-adapting thresholds
Each metric's "normal" is based on its own historical patterns

e Multi-timescale validation
Wltho ut any Short-term spikes/dives must be anomalous across ALL time windows

¥ to be flagged anomalous
false positives!

e Extreme outlier focus
Only flags behavior at or exceeding historical maximums

Real-world result:

e NOT 1% false positive rate
1% false positive per model A8 models = 10*-34% or:
0.0000000000000000000000000000000001% false positives per
metric



» Host Level Anomaly Detection Events

Reliable
host level
anomalies!

What is anomaly_detection.detector_events?

A special chart that tracks host-level anomaly events
Created for each host running ML anomaly detection

A state chart: 0 or 1

Triggers when =1% of host metrics get anomalous together

What 1% Threshold Means in Practice

Using the binomial probability

n = 3,000 metrics

p = 107-36 (probability of one metric being a false positive)
k = 30 (need at least this many)

P(X = 30) = (3000 choose 30) x (101-36)"30
The probability is: 107-1050 (in other words: really a lot of zeros after the dot )

Host-level false positives are not just "extremely unlikely"
They're mathematically impossible in the lifetime of the universe.

a0 11
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» And this how it looks

Anomaly advisor

£} Highight a time-f

me of interest to explore potential anomalies. Lear more on how to use Anomaly Advisor

Anomaly Rate
This is the percentage of metrics that are anomalous.
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» ML s trained at the edge!

The Metrics
processing
pipeline In
Netdata,

The Netdata Metrics
Processing Pipeline
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» ML CPU Utilization

Sliced training
and careful
consideration of
the metrics that

benefit from ML,

allows Netdata to
be lightweight.
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Many metrics are usually zero.

Like hardware errors, rare exceptions, etc. These are
usually covered by alerts that check for non-zero values.
So, all such metrics do not need to be trained.

Other metrics are usually constant.

Like the memory size on a server, or the pool of
connections size of a database server. These metrics do
not need to be trained either.

Sliced training for the rest.
For the rest of the metrics, we need to train a model every
3 hours.

Netdata usually trains 1-4 metrics per second.
At scale, Netdata needs ~1 CPU core, for training ML
models and detecting anomalies, for 500k metrics/s.
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» ML Memory Footprint

e Sliding Window Buffer
9 x 8 bytes (double) = 72 bytes

Remarkably e K-means Models

R 18 models per metric, 120 bytes per model
efflCIent memory Total for 18pmodels: 18 x 123 = 2?1 60 bytes
fOOtp” nt fOr real' e Feature Vector Buffer
time ML on T2 bytes

e K-means Working Structure

thousands Of 2 x 48 bytes + metadata = ~152 bytes
metrics

Total: 2.4KiB per metric

o For 3k metrics/server = 7.2 MiB
o For 10k metrics/server = 24 MiB



» ML Storage Footprint

Netdata stores
anomalies
together with the
samples, so
anomaly based
gueries are
possible.
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The anomaly bit is stored in the db.
Anomaly information is stored in the database together
with each sample collected.

We developed a custom floating point number, which
includes the anomaly bit (much like IEEE 745 stores the
sign of floating point numbers), ensuring that there is no
storage overhead at all.

Anomaly rate is calculated on the fly.
The Netdata query engine calculates the anomaly rates
for all metrics, on the fly, in one go.

Aggregated anomaly rate.

The Netdata query engine calculates aggregated anomaly
rates when combining multiple metrics in the same query,
providing a high level anomaly rate for each chart.



What ML can Detect?
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» What it can detect? (1/5)

Point Anomalies or Strange Points: Single points that represent
very big or very small values, not seen before (in some statistical
sense).

’ Examples:

e Asudden, extreme spike in
the number of failed
transactions for your
database server.

e An unexpected, moment of
high CPU utilization or
sudden memory spike for
your application server.
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» What it can detect? (2/5)

Contextual Anomalies or Strange Patterns: Not strange points in
their own, but unexpected sequences of points, given the history
of the time-series.

Examples:

X ’ e Aregular database job, or a
backup that did not run.

e Acap on the number of web
requests received.
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» What it can detect? (3/5)

Collective Anomalies or Strange Multivariate Patterns: Neither
strange points nor strange patterns, but in global sense something
looks off.

’ Examples:
e A network issue that

introduces a lot of
retransmits, lowers the

throughput of the web server
or the workload on the
W database server.
VAV

5"
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» What it can detect? (4/5)

Concept Drifts or Strange Trends: A slow and steady drift to a new
state.

X , Examples:

e A memory leak in an
application.

e An attack that is gradually
increased to its full load.

e Agradual increase in
response time latency.




» What it can detect? (5/5)
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Change Point Detection or Strange Step: A shift occurred and

gradually a new normal is established.

T

t

Examples:

e Afaulty deployment that
does not serve all the
workload.



What ML cannot Detect?
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» ML Limitations & Trade-offs

It's a powerful first-
line detection
system but needs
complementary
approaches for
complete coverage

Short lived workloads
CI/CD jobs, cron jobs, short lived containers: the system
may not get a chance to train models for them.

Crashed services
No data = no anomaly detection on the failed services. But
it will detect anomalies in dependent services.

Slow degradation below radar
Models may adapt incrementally to slow degradation.
"Boiling frog" problem - never crosses anomaly threshold.

Constant metrics that suddenly change
They have been excluded from training to optimize
performance. This includes binary/state metrics.

Learns anomalies too
An anomaly becomes “normal” in 3 hours and again
“anomaly” in 57 hours.



Integrated Everywhere
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» A Netdata Chart

Apps CPU context switches « app.cpu_context_switches ¢ [k switches/s] @ &l

Group by app_group ¥ the SUM() ¥ 7 nodes v 115 applications v 2 dimensions v 32 of 33 labels v each asAVG()every 4s v Reset

AR

k switches/s

i
11:42:00 11:44:00 11:46:00 11:48:00 11:50:00 11:52:00 11:54:00
Latest: Mon, Nov 06, 2023 « 11:55:44
vpn kernel cron system httpd apps.plugin tc-qos-helper netdata charts.d.plugin python.d.plugin t
{ 3.83 k switches/s | 0.79 k switches/s | 0.41 k switches/s | 0.12 k switches/s | 0.07 k switches/s | 0.04 k switches/s § 0.02 k switches/s § 0.02 k switches/s § 0.00 k switches/s § 0.00 k switches/s § @ »

Esders: :Netdata Parent Demo URL
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» A Netdata Chart - controls

NIDL Controls - review data sources and sliceffilter them
Aggregation (NIDL = Nodes, Instances, Dimensions, Labels) Aggregation

across metrics across time
Apps (Mmhes « app.cpu_context_switches ¢ [k Awitches/s] @ Sl

che » Group by app_group v the SUM() v[? nodes v 115 applications v 2 dimensions v 32 of 33 \abeav each asAVG() every 4s v Reset
AR

the data \ Anomaly

rate ribbon

10.00

8.00

k switches/s

6.00
4.00
2.00
0.00

i
11:42:00 11:44:00 11:46:00 11:48:00 11:50:00 11:52:00 11:54:00

Latest: Mon, Nov 06, 2023 » 11:55:44 I nfo
vpn kernel cron system httpd apps.plugin tc-qos-helper netdata charts.d.plugin python.d.plugin ti
y 3.83 k switches/s | 0.79 k switches/s | 0.41 k switches/s | 0.12 k switches/s | 0.07 k switches/s | 0.04 k switches/s § 0.02 k switches/s § 0.02 k switches/s § 0.00 k switches/s § 0.00 k switches/s § @ » rl bbon




» A Netdata Chart - anomaly rate per node

Anomaly
rate per node

Group by app_group v the SUM():~ 7 nodes ¥ 115 applications v 2 dimensions v 32 of 33 labels v each as AVG() every 4s v Respt

AR b =
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[ ]
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I

0.22%
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|
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I
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» A Netdata Chart - anomaly rate per instance

Anomaly
rate per application instance

Apps CPU context switches « app.cpu_con}eﬁ(t‘_swnches "{kvswnches/s]

Group by app_group v the SUM() v 7 nodes v 115 applications ¥ :2 dimensions v 32 of 33 labels v each as AVG()every 4s v Reget

AR

14.00

12.00

k switches/s

"Applications Q_ Search
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» A Netdata Chart - anomaly rate per label

Apps CPU context switches « app.cpu_context_switches « [k switches/s]

Group by app_group v the SUM() ¥ 7 nodes v 115 applications v 2 dimensions ¥ 32 of 33 labels ¥ .éach asAVG()every 4s v Reset

AR
Labels - Q Search

14.00

Name

| _collect_ module

| app_group

| ssh

k switches/s

| kernel

vpn

| apps.plugin
11:42:00 11:44:00 1
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0.00
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0.00
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» A Netdata Chart - anomaly rate per point

Anomaly rate per
point on the chart

Apps CPU context switches « app.cpu_context_switches ¢ [k switches/s]

Group by app_group v the SUM() ¥ 7 nodes v 115 applications v 2 dimensions v 32 of 33 labels v each as AVG()every 4s ¥v| Reset

AR
14.00
12.00
10.00
{4
@
Q
<
L
H
%
x
1
11:42:00 11:44:00
vpn kernel cron
y 3.78 k switches/s § 3.43 k switches/s | 0.04 k switches/s
mem

Popover per point

1
1
1
adal
1
1

Mon, Nov 06, 2023 « 11:44:44

: '(Sr‘anu\e\r\ly 1s

View point: average 4s

“Dimension Value
k switches/s
l ssh 3.89
l vpn 3.78
I kernel 3.43
l apps.plugin 0.04
l build
l charts.d.plugin 0.00
' cron 0.04
| debugfs.plugin 0.00
| ebpf.plugin 0.00
l email 0.00

12 more values

while hovering the chart

AR %

16.07
5.36

(ON=Re!

4. @aaq

Info

11:52:00 11:54:00
Hovering: Mon, Nov 06, 2023 » 11:44:44
netdata charts.d.plugin python.d.plugin ti
0.02 «k switches/s § 0.00 k switches/s | 0.00 k switches/s

[



Netdata has
a Scoring Engine
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» Netdata’s scoring engine

Netdata can score e Ascoring engine, a unique feature of
: Netdata, across monitoring systems.
all metrics based
th . | All metrics, independently of their context,
on elr anorn_a y can be scored across time, based on
rate for any given various parameters, including their

time-frame! anomaly rate.

e Metrics correlations is a subset of the
scoring engine, that can score metrics
based on their rate of change (data),
anomaly rate of change (anomaly rate),
but also based on volume, similarity, etc.



» A Netdata Dashboard - what is anomalous?
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» Anomaly Advisor - Root Cause Analysis

v 11/6/23+11:40 = 1155+ 15min = uve (B sce [ ofine =y o W sionin
& oveview S Nodes L) Alerts @ Anomalies fiw) Functions 2, Events
Anomaly advisor ©3 Anomalies -
Machine Learning powered automated anomaly detection running at the edge
Use this page as a starting point to explore potential anomalies. Lear more on how to use Anomaly Advisor. ey
71 Highlight a time-frame of interest to explore potential anomalies.
Anomaly Rate Host labels @ v
This is the percentage of metrics that are anomalous. Node status @ v Pe rce nta e Of
Percentage of anomalous dimensions » anomaly._detection.anomaly_rate « [percentage] Netdata version® o g
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Page! 36

Anomaly Advisor - Find the Root Cause

Highlighting an area
on the chart, triggers
the analysis

Percentage of anomalous dimensions « anomaly_detection.anomaly_rate « [percentage]

Group by node v the SUM() ¥ 8nodes v 35systems v 1dimension v 2labels v each as AVG()every 4s v Reset
AR v

10.00
9.00
8.00
7.00
6.00

5.00

percentage

4.00

3.00

2.00

1.00

0.00

11:44:00 11:46:00 11:48:00 11:50:00 11:52:00 11:54:00
1:54:57 » 1m29s Latest: Mon, Nov 06

Highlight: Mon, Nov G . 11:55:44
bangalore.netdata.rocks J frankfurt.netdata.rocks J iplists.firehol.org newyork.netdata.rocks I registry.my-netdata.io JJ sanfrancisco.netdata.rocks Jj singapore.netdata.rocks J toronto.netdata.rocks

0.00 % 0.00 % 0.06 % 0.00 % 0.00 0.04 % 0.00 % 0.00 %




» Anomaly Advisor - The Report

Anomaly advisor
presents a sorted
list of all metrics,
ordered by their
anomaly rate,
during the
highlighted time-
frame.

system.softirq_latency > RCU

Software IRQ latency « system.softirq_latency « [milliseconds]

Group by dimension v the SUM() v 6 nodes v 6instances v 1dimension v 2labels v each as AVG()every 4s v Reset

Page: 37

AR (I
50.00
40.00
30.00
20,00
10.00
0.00
' 11:42:00 11:44:00 11:46:00 11:48:00 11:50:00 11:52:00 11:54:00
Highight: Mon, Nov 0, 2023 + 11:53:26 - 115457 + 1m29s Latest: Mon, Nov 06,
RCU
4
5.61 ms
filesystem.file_descriptor > open
Open and close calls « filesystem.file_descriptor « [k calls/s]
Group by dimension v the SUM() v 6nodes v 6 instances v 1dimension v 2labels v each as AVG()every 4s v Reset
AR
20.00
2 1500
5
1000 M\_/W_/\_ﬁz\
i
11:42:00 11:44:00 11:46:00 11:48:00 11:50:00 11:52:00 11:54:00
Highight: Mon, Nov 06, 2023 + 11:53:28 - 115457 » 1m29s Latest: Mon, Nov 06, 2023 + 1155:44
open
13
8.75 kcls
system.memory_some_pressure > some 300
Memory some pressure + system.memory_some_pressure « [percentage]
Group by dimension v the SUM() v 7nodes v 7instances v 1dimension v 2labels v each as AVG()every 4s v Reset
AR
1.5000
2 10000
g
g
g 05000
g
g
0.0000
i
11:42:00 11:44:00 11:46:00 11:48:00 11:50:00 11:52:00 11:54:00
Highight: Mon, Nov 05, 2023 + 11:53:28 . 115457 + 1m29s Latest: Mon, Nov 06, 2023 - 115544
some 300
0 o

1.2200 %
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» Highlights of ML in Netdata

ML is an advisor.

To help you
understand the
data better,
and identify
metrics of
Interest.

Unsupervised anomaly detection
(you don’t need to configure it, or do anything about it
- just use it).

For all metrics, individually
(learning their behavior, from their past data, including
the workload).

Available everywhere
(on every dashboard, on every chart, on every metric,
to help you understand the data better).

Scoring engine
(to help you find what is important among the
thousands of metrics available).

Root Cause Analysis
(to find correlations among even unrelated data).
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» About Netdata

e 75k Github Stars!

Netdata is the most starred observability project.

e Leading the Observability category in CNCF!

In terms of Github stars: Netdata is 1st, then is Elasticsearch with 73k stars, Grafana
has 69k, Prometheus has 60k, etc.

e 1.5 million downloads every day!

Docker hub is counting 650M pulls so far.
Cloudflare reports 51TB of transferred data per month.




» What makes Netdata unique?

e Easy

Just install it on your servers and you are done!
Dashboards and alerts are automatically created for you.

e Real-Time

Per second resolution of all data.
Just 1-second data collection to visualization latency!

e A.l. everywhere

Machine Learning learns the patterns of all your data and detects anomalies without
any manual intervention or configuration!

e Cost Efficient

Designed to be used out-of-the-box and significantly lower operational costs.
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Questions? 7:?0‘/8(
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Costa Tsaousis



W NETDATA

The fastest path to Al-first, full stack observability,
even for lean teams!


https://netdata.cloud

