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The vast majority of proposed production engineering uses 
of Machine Learning (ML) will never work. They are 
structurally unsuited to their intended purposes. There are 
many key problem domains where SREs want to apply ML 
but most of them do not have the right characteristics to be 
feasible in the way that we hope. After addressing the most 
common proposed uses of ML for production engineering 
and explaining why they won't work, several options will be 
considered, including approaches to evaluating proposed 
applications of ML for feasibility. ML cannot solve most of 
the problems most people want it to, but it can solve 
some problems. Probably.

Google: 

All of Our ML 
Ideas Are Bad  
 
(and We Should Feel 
Bad)
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AI for observability is tricky

:URL
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Hey AI, 
how is my infrastructure today?
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Question 1
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AI’s plan:

1. Get raised alerts.

2. Get top nodes by CPU, memory, disk pressure.

3. Get the last few error logs.

4. If you are lucky: attempt to discover metrics about errors or 
latency, pick a few of them and make a couple of queries in 
hope they will show something.

5. Conclude.

The problem: 
AI does not have a context (what is important for you), and does not 
have any means to surface infrastructure level issues easily, apart 
from alerts.

Hey AI, 
how is my 
infrastructure 
today?
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Question 1: typical AI’s plan
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Netdata provides 2 tools, that require from the LLM to know 
just the time-window of interest: 

1. find_anomalous_metrics  
Netdata trains 18 ML models per metric, at the edge, providing 
~54 hours of rolling behavioral patterns. 
Anomaly detection occurs in real-time during data collection. A 
data point is flagged as anomalous only when all 18 models 
reach consensus. The result is ordered by anomaly rate. 

2. find_correlated_metrics  
Score metrics based on how much they changed between two 
time-windows, using either KS2 or Volume. 

Both of these tools return an ordered list of metrics, and the LLM 
can select how many it wants.
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Question 1: Netdata’s Answer

Hey AI, 
how is my 
infrastructure 
today?



Design of ML in Netdata
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The Challenge

● Netdata monitors 3k - 10k metrics per server
● Collects metrics in real-time, per-second

The Goal

● Detect genuine anomalies without drowning in false positives
● No manual configuration or training required
● No more than 2-5% CPU utilization of a single core
● No more than a few KiB per metric

The Solution

● Unsupervised k-means clustering (k=2)
● 18 models per metric trained on different time windows
● Consensus mechanism: ALL models must agree
● Min-max normalized anomaly scoring

7

Netdata ML Anomaly Detection Overview

Netdata trains 
ML at the edge, 
on each server!
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Training a new model (every 3 hours)

● Take 6 hours of high-resolution metric data (per-second)
● Create feature vectors (differenced, smoothed, 5 lags)
● K-means clustering finds 2 behavior patterns
● Record min and max distances from cluster centers

Anomaly Detection per model (real-time)

● Collect raw metric value
● Apply differencing → smoothing → lagging to create 6D feature vector
● Calculate average Euclidean distance to the 2 cluster centers
● Anomaly Score = 100 × (distance - min) / (max - min)
● If score ≥ 99 → Model says "anomalous"

Key: This is not a percentile! It's normalized distance relative to 
training extremes.
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How Individual Model Detection Works

Real-time 
anomaly 
detection!



Page:

18 Models Per Metric

● Each trained on 6-hour windows
● Staggered at 3-hour intervals
● Covers ~57 hours of patterns

 For a point to be anomalous

● Model 1 (trained on hours 0-6): ✓ Anomalous
● Model 2 (trained on hours 3-9): ✓ Anomalous
● Model 3 (trained on hours 6-12): ✓ Anomalous
● ... ALL 18 models must agree!

Result: Random false positives virtually eliminated!
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The Consensus Mechanism

18 models 
consensus!
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● Self-adapting thresholds  
Each metric's "normal" is based on its own historical patterns 

● Multi-timescale validation 
Short-term spikes/dives must be anomalous across ALL time windows 
to be flagged anomalous 

● Extreme outlier focus  
Only flags behavior at or exceeding historical maximums 

Real-world result:

● NOT 1% false positive rate
● 1% false positive per model ^18 models = 10^-34% or: 

0.0000000000000000000000000000000001% false positives per 
metric
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Why This Achieves Ultra-Low False Positives

Without any 
false positives!
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What is anomaly_detection.detector_events?

● A special chart that tracks host-level anomaly events
● Created for each host running ML anomaly detection
● A state chart: 0 or 1
● Triggers when ≥1% of host metrics get anomalous together

What 1% Threshold Means in Practice

● Using the binomial probability
● n = 3,000 metrics
● p = 10^-36 (probability of one metric being a false positive)
● k = 30 (need at least this many)

P(X ≥ 30) ≈ (3000 choose 30) × (10^-36)^30

The probability is: 10^-1050 (in other words: really a lot of zeros after the dot :)

Host-level false positives are not just  "extremely unlikely" 
They're mathematically impossible in the lifetime of the universe.
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Host Level Anomaly Detection Events

Reliable  
host level 
anomalies!
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And this how it looks

On a real outage

Up to 5% of host metrics 
anomalous simultaneously

Up to 1500 concurrently 
anomalous metrics per host

Host level anomalies 
identified
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ML is trained at the edge!

The Metrics 
processing 
pipeline in 
Netdata, 
automatically 
trains ML 
models and 
detects 
anomalies.

The Netdata Metrics 
Processing Pipeline
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● Many metrics are usually zero. 
Like hardware errors, rare exceptions, etc. These are 
usually covered by alerts that check for non-zero values. 
So, all such metrics do not need to be trained.

● Other metrics are usually constant. 
Like the memory size on a server, or the pool of 
connections size of a database server. These metrics do 
not need to be trained either. 

● Sliced training for the rest. 
For the rest of the metrics, we need to train a model every 
3 hours. 
 
Netdata usually trains 1-4 metrics per second. 
At scale, Netdata needs ~1 CPU core, for training ML 
models and detecting anomalies, for 500k metrics/s.

Sliced training 
and careful 
consideration of 
the metrics that 
benefit from ML, 
allows Netdata to 
be lightweight.
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ML CPU Utilization
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● Sliding Window Buffer  
9 × 8 bytes (double) = 72 bytes

● K-means Models  
18 models per metric, 120 bytes per model  
Total for 18 models: 18 × 120 = 2,160 bytes

● Feature Vector Buffer  
~72 bytes

● K-means Working Structure  
2 × 48 bytes + metadata = ~152 bytes 

Total: 2.4KiB per metric

○ For 3k metrics/server = 7.2 MiB
○ For 10k metrics/server = 24 MiB

Remarkably 
efficient memory 
footprint for real-
time ML on 
thousands of 
metrics
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ML Memory Footprint
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● The anomaly bit is stored in the db. 
Anomaly information is stored in the database together 
with each sample collected. 
 
We developed a custom floating point number, which 
includes the anomaly bit (much like IEEE 745 stores the 
sign of floating point numbers), ensuring that there is no 
storage overhead at all.

● Anomaly rate is calculated on the fly. 
The Netdata query engine calculates the anomaly rates 
for all metrics, on the fly, in one go.

● Aggregated anomaly rate. 
The Netdata query engine calculates aggregated anomaly 
rates when combining multiple metrics in the same query, 
providing a high level anomaly rate for each chart.

Netdata stores 
anomalies 
together with the 
samples, so 
anomaly based 
queries are 
possible.

16

ML Storage Footprint



What ML can Detect?
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Point Anomalies or Strange Points: Single points that represent 
very big or very small values, not seen before (in some statistical 
sense).
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What it can detect? (1/5)

Examples:

● A sudden, extreme spike in 
the number of failed 
transactions for your 
database server. 

● An unexpected, moment of 
high CPU utilization or 
sudden memory spike for 
your application server.
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Contextual Anomalies or Strange Patterns: Not strange points in 
their own, but unexpected sequences of points, given the history 
of the time-series.
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What it can detect? (2/5)

Examples:

● A regular database job, or a 
backup that did not run. 

● A cap on the number of web 
requests received.
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Collective Anomalies or Strange Multivariate Patterns: Neither 
strange points nor strange patterns, but in global sense something 
looks off.
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What it can detect? (3/5)

Examples:

● A network issue that 
introduces a lot of 
retransmits, lowers the 
throughput of the web server 
or the workload on the 
database server. 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Concept Drifts or Strange Trends: A slow and steady drift to a new 
state.
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What it can detect? (4/5)

Examples:

● A memory leak in an 
application. 

● An attack that is gradually 
increased to its full load. 

● A gradual increase in 
response time latency.
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Change Point Detection or Strange Step: A shift occurred and 
gradually a new normal is established.
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What it can detect? (5/5)

Examples:

● A faulty deployment that 
does not serve all the 
workload. 



What ML cannot Detect?
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● Short lived workloads  
CI/CD jobs, cron jobs, short lived containers: the system 
may not get a chance to train models for them.

● Crashed services  
No data = no anomaly detection on the failed services. But 
it will detect anomalies in dependent services.

● Slow degradation below radar  
Models may adapt incrementally to slow degradation. 
"Boiling frog" problem - never crosses anomaly threshold.

● Constant metrics that suddenly change  
They have been excluded from training to optimize 
performance. This includes binary/state metrics.

● Learns anomalies too 
An anomaly becomes “normal” in 3 hours and again 
“anomaly” in 57 hours.

It's a powerful first-
line detection 
system but needs 
complementary 
approaches for 
complete coverage
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ML Limitations & Trade-offs



Integrated Everywhere
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A Netdata Chart

Netdata Cloud Live Demo URL::Netdata Parent Demo URL
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A Netdata Chart - controls

Anomaly
rate ribbon

NIDL Controls - review data sources and slice/filter them
(NIDL = Nodes, Instances, Dimensions, Labels) Aggregation

across time
Aggregation 
across metrics

Info
ribbon

Dice
the data
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A Netdata Chart - anomaly rate per node
Anomaly
rate per node
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A Netdata Chart - anomaly rate per instance
Anomaly
rate per application instance
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A Netdata Chart - anomaly rate per label

Anomaly
rate per label
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A Netdata Chart - anomaly rate per point
Anomaly rate per 
point on the chart

Popover per point 
while hovering the chart



Netdata has 
a Scoring Engine
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● A scoring engine, a unique feature of 
Netdata, across monitoring systems.

● All metrics, independently of their context, 
can be scored across time, based on 
various parameters, including their 
anomaly rate.

● Metrics correlations is a subset of the 
scoring engine, that can score metrics 
based on their rate of change (data), 
anomaly rate of change (anomaly rate), 
but also based on volume, similarity, etc.

Netdata can score 
all metrics based 
on their anomaly 
rate for any given 
time-frame!
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Netdata’s scoring engine
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A Netdata Dashboard - what is anomalous?

Time-frame picker

Anomaly rate 
per section for 
the time-frame

Anomaly Rate button



Page: 35

Anomaly Advisor - Root Cause Analysis

Percentage of 
Host Anomaly 
Rate

Number of metrics 
concurrently 
anomalous
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Anomaly Advisor - Find the Root Cause
Highlighting an area 
on the chart, triggers 
the analysis
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Anomaly Advisor - The Report

Anomaly advisor 
presents a sorted 
list of all metrics, 
ordered by their 
anomaly rate, 
during the 
highlighted time-
frame.



Highlights
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● Unsupervised anomaly detection  
(you don’t need to configure it, or do anything about it 
- just use it).

● For all metrics, individually 
(learning their behavior, from their past data, including 
the workload).

● Available everywhere  
(on every dashboard, on every chart, on every metric, 
to help you understand the data better).

● Scoring engine  
(to help you find what is important among the 
thousands of metrics available).

● Root Cause Analysis  
(to find correlations among even unrelated data).

ML is an advisor. 
 
To help you 
understand the 
data better,  
and identify 
metrics of 
interest.
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Highlights of ML in Netdata
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About Netdata

● 75k Github Stars! 
Netdata is the most starred observability project.

● Leading the Observability category in CNCF! 
In terms of Github stars: Netdata is 1st, then is Elasticsearch with 73k stars, Grafana 
has 69k, Prometheus has 60k, etc.

● 1.5 million downloads every day! 
Docker hub is counting 650M pulls so far. 
Cloudflare reports 51TB of transferred data per month.

GitHub URL:
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What makes Netdata unique?

● Easy  
Just install it on your servers and you are done! 
Dashboards and alerts are automatically created for you.

● Real-Time  
Per second resolution of all data. 
Just 1-second data collection to visualization latency!

● A.I. everywhere  
Machine Learning learns the patterns of all your data and detects anomalies without 
any manual intervention or configuration!

● Cost Efficient 
Designed to be used out-of-the-box and significantly lower operational costs.



Questions?

Costa Tsaousis
:GitHub URL, https://github.com/netdata/netdata



netdata.cloud

The fastest path to AI-first, full stack observability, 
even for lean teams!

https://netdata.cloud

