
Practical AI 
with Machine Learning  
for Observability in Netdata

Costa Tsaousis

Page:

Wednesday, 2 October, 2019

Todd Underwood, Google
The vast majority of proposed production engineering uses
of Machine Learning (ML) will never work. They are
structurally unsuited to their intended purposes. There are
many key problem domains where SREs want to apply ML
but most of them do not have the right characteristics to be
feasible in the way that we hope. After addressing the most
common proposed uses of ML for production engineering
and explaining why they won't work, several options will be
considered, including approaches to evaluating proposed
applications of ML for feasibility. ML cannot solve most of
the problems most people want it to, but it can solve
some problems. Probably.

Google: 

All of Our ML
Ideas Are Bad  
 
(and We Should Feel
Bad)

2

AI for observability is tricky

:URL

Page:

Hey AI, 
how is my infrastructure today?

3

Question 1

Page:

AI’s plan:

1. Get raised alerts.

2. Get top nodes by CPU, memory, disk pressure.

3. Get the last few error logs.

4. If you are lucky: attempt to discover metrics about errors or
latency, pick a few of them and make a couple of queries in
hope they will show something.

5. Conclude.

The problem: 
AI does not have a context (what is important for you), and does not
have any means to surface infrastructure level issues easily, apart
from alerts.

Hey AI, 
how is my
infrastructure
today?

4

Question 1: typical AI’s plan

Page:

Netdata provides 2 tools, that require from the LLM to know
just the time-window of interest: 

1. find_anomalous_metrics  
Netdata trains 18 ML models per metric, at the edge, providing
~54 hours of rolling behavioral patterns. 
Anomaly detection occurs in real-time during data collection. A
data point is flagged as anomalous only when all 18 models
reach consensus. The result is ordered by anomaly rate. 

2. find_correlated_metrics  
Score metrics based on how much they changed between two
time-windows, using either KS2 or Volume. 

Both of these tools return an ordered list of metrics, and the LLM
can select how many it wants.

5

Question 1: Netdata’s Answer

Hey AI, 
how is my
infrastructure
today?

Design of ML in Netdata

Page:

The Challenge

● Netdata monitors 3k - 10k metrics per server
● Collects metrics in real-time, per-second

The Goal

● Detect genuine anomalies without drowning in false positives
● No manual configuration or training required
● No more than 2-5% CPU utilization of a single core
● No more than a few KiB per metric

The Solution

● Unsupervised k-means clustering (k=2)
● 18 models per metric trained on different time windows
● Consensus mechanism: ALL models must agree
● Min-max normalized anomaly scoring

7

Netdata ML Anomaly Detection Overview

Netdata trains
ML at the edge,
on each server!

Page:

Training a new model (every 3 hours)

● Take 6 hours of high-resolution metric data (per-second)
● Create feature vectors (differenced, smoothed, 5 lags)
● K-means clustering finds 2 behavior patterns
● Record min and max distances from cluster centers

Anomaly Detection per model (real-time)

● Collect raw metric value
● Apply differencing → smoothing → lagging to create 6D feature vector
● Calculate average Euclidean distance to the 2 cluster centers
● Anomaly Score = 100 × (distance - min) / (max - min)
● If score ≥ 99 → Model says "anomalous"

Key: This is not a percentile! It's normalized distance relative to
training extremes.

8

How Individual Model Detection Works

Real-time
anomaly
detection!

Page:

18 Models Per Metric

● Each trained on 6-hour windows
● Staggered at 3-hour intervals
● Covers ~57 hours of patterns

 For a point to be anomalous

● Model 1 (trained on hours 0-6): ✓ Anomalous
● Model 2 (trained on hours 3-9): ✓ Anomalous
● Model 3 (trained on hours 6-12): ✓ Anomalous
● ... ALL 18 models must agree!

Result: Random false positives virtually eliminated!

9

The Consensus Mechanism

18 models
consensus!

Page:

● Self-adapting thresholds  
Each metric's "normal" is based on its own historical patterns 

● Multi-timescale validation 
Short-term spikes/dives must be anomalous across ALL time windows
to be flagged anomalous 

● Extreme outlier focus  
Only flags behavior at or exceeding historical maximums 

Real-world result:

● NOT 1% false positive rate
● 1% false positive per model ^18 models = 10^-34% or:

0.0000000000000000000000000000000001% false positives per
metric

10

Why This Achieves Ultra-Low False Positives

Without any
false positives!

Page:

What is anomaly_detection.detector_events?

● A special chart that tracks host-level anomaly events
● Created for each host running ML anomaly detection
● A state chart: 0 or 1
● Triggers when ≥1% of host metrics get anomalous together

What 1% Threshold Means in Practice

● Using the binomial probability
● n = 3,000 metrics
● p = 10^-36 (probability of one metric being a false positive)
● k = 30 (need at least this many)

P(X ≥ 30) ≈ (3000 choose 30) × (10^-36)^30

The probability is: 10^-1050 (in other words: really a lot of zeros after the dot :)

Host-level false positives are not just "extremely unlikely" 
They're mathematically impossible in the lifetime of the universe.

11

Host Level Anomaly Detection Events

Reliable  
host level
anomalies!

Page: 12

And this how it looks

On a real outage

Up to 5% of host metrics
anomalous simultaneously

Up to 1500 concurrently
anomalous metrics per host

Host level anomalies
identified

Page: 13

ML is trained at the edge!

The Metrics
processing
pipeline in
Netdata,
automatically
trains ML
models and
detects
anomalies.

The Netdata Metrics
Processing Pipeline

Page:

● Many metrics are usually zero. 
Like hardware errors, rare exceptions, etc. These are
usually covered by alerts that check for non-zero values.
So, all such metrics do not need to be trained.

● Other metrics are usually constant. 
Like the memory size on a server, or the pool of
connections size of a database server. These metrics do
not need to be trained either.

● Sliced training for the rest. 
For the rest of the metrics, we need to train a model every
3 hours. 
 
Netdata usually trains 1-4 metrics per second. 
At scale, Netdata needs ~1 CPU core, for training ML
models and detecting anomalies, for 500k metrics/s.

Sliced training
and careful
consideration of
the metrics that
benefit from ML,
allows Netdata to
be lightweight.

14

ML CPU Utilization

Page:

● Sliding Window Buffer  
9 × 8 bytes (double) = 72 bytes

● K-means Models  
18 models per metric, 120 bytes per model  
Total for 18 models: 18 × 120 = 2,160 bytes

● Feature Vector Buffer  
~72 bytes

● K-means Working Structure  
2 × 48 bytes + metadata = ~152 bytes 

Total: 2.4KiB per metric

○ For 3k metrics/server = 7.2 MiB
○ For 10k metrics/server = 24 MiB

Remarkably
efficient memory
footprint for real-
time ML on
thousands of
metrics

15

ML Memory Footprint

Page:

● The anomaly bit is stored in the db. 
Anomaly information is stored in the database together
with each sample collected. 
 
We developed a custom floating point number, which
includes the anomaly bit (much like IEEE 745 stores the
sign of floating point numbers), ensuring that there is no
storage overhead at all.

● Anomaly rate is calculated on the fly. 
The Netdata query engine calculates the anomaly rates
for all metrics, on the fly, in one go.

● Aggregated anomaly rate. 
The Netdata query engine calculates aggregated anomaly
rates when combining multiple metrics in the same query,
providing a high level anomaly rate for each chart.

Netdata stores
anomalies
together with the
samples, so
anomaly based
queries are
possible.

16

ML Storage Footprint

What ML can Detect?

Page:

Point Anomalies or Strange Points: Single points that represent
very big or very small values, not seen before (in some statistical
sense).

18

What it can detect? (1/5)

Examples:

● A sudden, extreme spike in
the number of failed
transactions for your
database server. 

● An unexpected, moment of
high CPU utilization or
sudden memory spike for
your application server.

Page:

Contextual Anomalies or Strange Patterns: Not strange points in
their own, but unexpected sequences of points, given the history
of the time-series.

19

What it can detect? (2/5)

Examples:

● A regular database job, or a
backup that did not run. 

● A cap on the number of web
requests received.

Page:

Collective Anomalies or Strange Multivariate Patterns: Neither
strange points nor strange patterns, but in global sense something
looks off.

20

What it can detect? (3/5)

Examples:

● A network issue that
introduces a lot of
retransmits, lowers the
throughput of the web server
or the workload on the
database server. 

Page:

Concept Drifts or Strange Trends: A slow and steady drift to a new
state.

21

What it can detect? (4/5)

Examples:

● A memory leak in an
application. 

● An attack that is gradually
increased to its full load. 

● A gradual increase in
response time latency.

Page:

Change Point Detection or Strange Step: A shift occurred and
gradually a new normal is established.

22

What it can detect? (5/5)

Examples:

● A faulty deployment that
does not serve all the
workload. 

What ML cannot Detect?

Page:

● Short lived workloads  
CI/CD jobs, cron jobs, short lived containers: the system
may not get a chance to train models for them.

● Crashed services  
No data = no anomaly detection on the failed services. But
it will detect anomalies in dependent services.

● Slow degradation below radar  
Models may adapt incrementally to slow degradation.
"Boiling frog" problem - never crosses anomaly threshold.

● Constant metrics that suddenly change  
They have been excluded from training to optimize
performance. This includes binary/state metrics.

● Learns anomalies too 
An anomaly becomes “normal” in 3 hours and again
“anomaly” in 57 hours.

It's a powerful first-
line detection
system but needs
complementary
approaches for
complete coverage

24

ML Limitations & Trade-offs

Integrated Everywhere

Page: 26

A Netdata Chart

Netdata Cloud Live Demo URL::Netdata Parent Demo URL

Page: 27

A Netdata Chart - controls

Anomaly
rate ribbon

NIDL Controls - review data sources and slice/filter them
(NIDL = Nodes, Instances, Dimensions, Labels) Aggregation

across time
Aggregation
across metrics

Info
ribbon

Dice
the data

Page: 28

A Netdata Chart - anomaly rate per node
Anomaly
rate per node

Page: 29

A Netdata Chart - anomaly rate per instance
Anomaly
rate per application instance

Page: 30

A Netdata Chart - anomaly rate per label

Anomaly
rate per label

Page: 31

A Netdata Chart - anomaly rate per point
Anomaly rate per
point on the chart

Popover per point 
while hovering the chart

Netdata has 
a Scoring Engine

Page:

● A scoring engine, a unique feature of
Netdata, across monitoring systems.

● All metrics, independently of their context,
can be scored across time, based on
various parameters, including their
anomaly rate.

● Metrics correlations is a subset of the
scoring engine, that can score metrics
based on their rate of change (data),
anomaly rate of change (anomaly rate),
but also based on volume, similarity, etc.

Netdata can score
all metrics based
on their anomaly
rate for any given
time-frame!

33

Netdata’s scoring engine

Page: 34

A Netdata Dashboard - what is anomalous?

Time-frame picker

Anomaly rate
per section for
the time-frame

Anomaly Rate button

Page: 35

Anomaly Advisor - Root Cause Analysis

Percentage of
Host Anomaly
Rate

Number of metrics
concurrently
anomalous

Page: 36

Anomaly Advisor - Find the Root Cause
Highlighting an area
on the chart, triggers
the analysis

Page: 37

Anomaly Advisor - The Report

Anomaly advisor
presents a sorted
list of all metrics,
ordered by their
anomaly rate, 
during the
highlighted time-
frame.

Highlights

Page:

● Unsupervised anomaly detection  
(you don’t need to configure it, or do anything about it
- just use it).

● For all metrics, individually 
(learning their behavior, from their past data, including
the workload).

● Available everywhere  
(on every dashboard, on every chart, on every metric,
to help you understand the data better).

● Scoring engine  
(to help you find what is important among the
thousands of metrics available).

● Root Cause Analysis  
(to find correlations among even unrelated data).

ML is an advisor. 
 
To help you
understand the
data better,  
and identify
metrics of
interest.

39

Highlights of ML in Netdata

Page: 40

About Netdata

● 75k Github Stars! 
Netdata is the most starred observability project.

● Leading the Observability category in CNCF! 
In terms of Github stars: Netdata is 1st, then is Elasticsearch with 73k stars, Grafana
has 69k, Prometheus has 60k, etc.

● 1.5 million downloads every day! 
Docker hub is counting 650M pulls so far. 
Cloudflare reports 51TB of transferred data per month.

GitHub URL:

Page: 41

What makes Netdata unique?

● Easy  
Just install it on your servers and you are done! 
Dashboards and alerts are automatically created for you.

● Real-Time  
Per second resolution of all data. 
Just 1-second data collection to visualization latency!

● A.I. everywhere  
Machine Learning learns the patterns of all your data and detects anomalies without
any manual intervention or configuration!

● Cost Efficient 
Designed to be used out-of-the-box and significantly lower operational costs.

Questions?

Costa Tsaousis
:GitHub URL, https://github.com/netdata/netdata

netdata.cloud

The fastest path to AI-first, full stack observability, 
even for lean teams!

https://netdata.cloud

