
How to efficiently manage logs
in large-scale Kubernetes clusters

Open Source Observability Day 2024

Aliaksandr Valialkin, CTO at VictoriaMetrics

About me (valyala)

● I’m software engineer

About me (valyala)

● I’m software engineer
● I like writing fast code in Go

About me (valyala)

● I’m software engineer
● I like writing fast code in Go
● I work on specialized open-source databases

○ VictoriaMetrics - time series database

About me (valyala)

● I’m software engineer
● I like writing fast code in Go
● I work on specialized open-source databases

○ VictoriaMetrics - time series database
○ VictoriaLogs - database for logs

Kubernetes cluster

Kubernetes cluster

Node 1 Node 2 Node N

Control Plane

…

CPU RAM

Network

CPU RAM

Network

CPU RAM

Network

Kubernetes node

Pod 1 Pod 2 Pod M

Kubelet

…

Kubernetes pod

Container 1 Container 2 Container P…

Shared persistent volumes

Docker image 1 Docker image 2 Docker image P

Limits: CPU, RAM Limits: CPU, RAM Limits: CPU, RAM

Kubernetes logs

Container 1 Container 2 Container P…

Shared persistent volumes

Docker image 1 Docker image 2 Docker image P

Limits: CPU, RAM Limits: CPU, RAM Limits: CPU, RAM

Logs Logs Logs

Kubernetes log sources

Kubernetes log sources

● Kubernetes containers

Kubernetes log sources

● Kubernetes containers
○ Control plane (apiserver, etcd, kube-scheduler, etc.)

Kubernetes log sources

● Kubernetes containers
○ Control plane (apiserver, etcd, kube-scheduler, etc.)
○ Node services (kubelet, kube-proxy, container runtime, etc.)

Kubernetes log sources

● Kubernetes containers
○ Control plane (apiserver, etcd, kube-scheduler, etc.)
○ Node services (kubelet, kube-proxy, container runtime, etc.)

● User containers

Kubernetes log sources

● Kubernetes containers
○ Control plane (apiserver, etcd, kube-scheduler, etc.)
○ Node services (kubelet, kube-proxy, container runtime, etc.)

● User containers

The most of Kubernetes logs are usually
generated by containers deployed by users
(aka microservices)

Kubernetes container logs

Kubernetes container logs: destination

● stdout / stderr

Kubernetes container logs: destination

● stdout / stderr
● custom files

Kubernetes container logs: destination

● stdout / stderr
● custom files
● external database for logs

Kubernetes container logs: destination

● stdout / stderr
● custom files
● external database for logs

Stdout / stderr is the standard destination
for container logs in Kubernetes

Kubernetes container logs: lifecycle

● Kubernetes automatically collects stdout / stderr logs from every running
container

Kubernetes container logs: lifecycle

● Kubernetes automatically collects stdout / stderr logs from every running
container

● Per-container logs are stored into distinct files on the local Kubernetes node

Kubernetes container logs: lifecycle

● Kubernetes automatically collects stdout / stderr logs from every running
container

● Per-container logs are stored into distinct files on the local Kubernetes node
● Every log file size is limited with 10MB. Older logs are automatically dropped

Kubernetes container logs: lifecycle

● Kubernetes automatically collects stdout / stderr logs from every running
container

● Per-container logs are stored into distinct files on the local Kubernetes node
● Every log file size is limited with 10MB. Older logs are automatically dropped
● Logs for stopped containers are eventually dropped

Kubernetes container logs: lifecycle

● Kubernetes automatically collects stdout / stderr logs from every running
container

● Per-container logs are stored into distinct files on the local Kubernetes node
● Every log file size is limited with 10MB. Older logs are automatically dropped
● Logs for stopped containers are eventually dropped
● Container logs can be inspected with kubectl logs command

Kubernetes container logs: lifecycle

● Kubernetes automatically collects stdout / stderr logs from every running
container

● Per-container logs are stored into distinct files on the local Kubernetes node
● Every log file size is limited with 10MB. Older logs are automatically dropped
● Logs for stopped containers are eventually dropped
● Container logs can be inspected with kubectl logs command

kubectl logs pod_name -c container_name

“kubectl logs” features

● Scales to millions of containers

“kubectl logs” features

● Scales to millions of containers
● Supports “tail -f” functionality

“kubectl logs” features

● Scales to millions of containers
● Supports “tail -f” functionality
● Good integration with traditional Unix command-line tools (grep, head, tail,

etc.)

“kubectl logs” issues

● Shows only the last 10MB of logs per container by default

“kubectl logs” issues

● Shows only the last 10MB of logs per container by default
● Logs for stopped containers are lost eventually

“kubectl logs” issues

● Shows only the last 10MB of logs per container by default
● Logs for stopped containers are lost eventually
● Doesn’t provide the ability to quickly search over large volume of logs across

containers
○ Find all logs with trace_id=XXXXXXXX

“kubectl logs” issues

● Shows only the last 10MB of logs per container by default
● Logs for stopped containers are lost eventually
● Doesn’t provide the ability to quickly search over large volume of logs across

containers
○ Find all logs with trace_id=XXXXXXXX

● Doesn’t provide tools for log analytics
○ Find top 5 containers with the highest volumes of logs

Large-scale logging solution
for Kubernetes: requirements

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs
○ Allows managing logs in a centralized manner

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs
○ Allows managing logs in a centralized manner
○ Allows querying all the logs at once

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs
○ Allows managing logs in a centralized manner
○ Allows querying all the logs at once

● Requirements for database for logs:

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs
○ Allows managing logs in a centralized manner
○ Allows querying all the logs at once

● Requirements for database for logs:
○ Ability to efficiently accept and store huge log volumes

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs
○ Allows managing logs in a centralized manner
○ Allows querying all the logs at once

● Requirements for database for logs:
○ Ability to efficiently accept and store huge log volumes
○ Fast full-text search over terabytes of ingested logs

Large-scale logging solution for Kubernetes: requirements

● To forward logs from all the containers to a centralized database for logs
○ Allows managing logs in a centralized manner
○ Allows querying all the logs at once

● Requirements for database for logs:
○ Ability to efficiently accept and store huge log volumes
○ Fast full-text search over terabytes of ingested logs
○ Fast analytics over the billions of ingested logs

Databases for Kubernetes logs

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

● Analytical databases - ClickHouse
○ Scales great for large log volumes

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

● Analytical databases - ClickHouse
○ Scales great for large log volumes
○ Non-trivial to configure properly

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

● Analytical databases - ClickHouse
○ Scales great for large log volumes
○ Non-trivial to configure properly
○ Needs custom tools for simplifying logs’ ingestion and querying

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

● Analytical databases - ClickHouse
○ Scales great for large log volumes
○ Non-trivial to configure properly
○ Needs custom tools for simplifying logs’ ingestion and querying

● Document indexing databases - Elasticsearch, OpenSearch
○ Fast search and analytics over logs

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

● Analytical databases - ClickHouse
○ Scales great for large log volumes
○ Non-trivial to configure properly
○ Needs custom tools for simplifying logs’ ingestion and querying

● Document indexing databases - Elasticsearch, OpenSearch
○ Fast search and analytics over logs
○ Non-trivial setup and operation

Databases for Kubernetes logs

● Traditional databases - MySQL, PostgreSQL, etc.
○ Works OK for small volumes of logs
○ Scalability issues on large log volumes (needs a lot of disk space, disk IO, RAM and CPU)
○ Not-so-good usability for typical logging tasks

● Analytical databases - ClickHouse
○ Scales great for large log volumes
○ Non-trivial to configure properly
○ Needs custom tools for simplifying logs’ ingestion and querying

● Document indexing databases - Elasticsearch, OpenSearch
○ Fast search and analytics over logs
○ Non-trivial setup and operation
○ Needs a ton of RAM for large log volumes

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)
○ Hard to configure and operate properly

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)
○ Hard to configure and operate properly

● VictoriaLogs
○ Trivial to setup and operate

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)
○ Hard to configure and operate properly

● VictoriaLogs
○ Trivial to setup and operate
○ Low disk space usage (up to 15x less than Elasticsearch)

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)
○ Hard to configure and operate properly

● VictoriaLogs
○ Trivial to setup and operate
○ Low disk space usage (up to 15x less than Elasticsearch)
○ Low RAM usage (up to 30x less than Elasticsearch)

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)
○ Hard to configure and operate properly

● VictoriaLogs
○ Trivial to setup and operate
○ Low disk space usage (up to 15x less than Elasticsearch)
○ Low RAM usage (up to 30x less than Elasticsearch)
○ Fast full-text search over large volumes of logs

Databases for Kubernetes logs: specialized databases

● Loki
○ Good compression for logs
○ Slow search over large volumes of logs
○ Doesn’t support log high-cardinality log fields (user_id, trace_id, ip)
○ Hard to configure and operate properly

● VictoriaLogs
○ Trivial to setup and operate
○ Low disk space usage (up to 15x less than Elasticsearch)
○ Low RAM usage (up to 30x less than Elasticsearch)
○ Fast full-text search over large volumes of logs
○ Works perfectly with high-cardinality log fields (user_id, trace_id, ip)

VictoriaLogs

VictoriaLogs

● Open source database for logs

VictoriaLogs

● Open source database for logs
● Easy to setup and operate - a single small executable, which runs optimally

with default configs

VictoriaLogs

● Open source database for logs
● Easy to setup and operate - a single small executable, which runs optimally

with default configs
● Automatically scales to available CPU and RAM - from Raspberry PI to hosts

with hundreds of CPU cores and terabytes of RAM

VictoriaLogs

● Open source database for logs
● Easy to setup and operate - a single small executable, which runs optimally

with default configs
● Automatically scales to available CPU and RAM - from Raspberry PI to hosts

with hundreds of CPU cores and terabytes of RAM
● Supports popular log shipping protocols - syslog, elasticsearch, loki, vector,

filebeat, fluentbit, logstash, opentelemetry, telegraf -
https://docs.victoriametrics.com/victorialogs/data-ingestion/

https://docs.victoriametrics.com/victorialogs/data-ingestion/

VictoriaLogs: querying features

● Provides simple yet powerful query language - LogsQL -
https://docs.victoriametrics.com/victorialogs/logsql/

https://docs.victoriametrics.com/victorialogs/logsql/

VictoriaLogs: querying features

● Provides simple yet powerful query language - LogsQL -
https://docs.victoriametrics.com/victorialogs/logsql/

● Provides an interactive command-line interface for querying -
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

https://docs.victoriametrics.com/victorialogs/logsql/
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

VictoriaLogs: querying features

● Provides simple yet powerful query language - LogsQL -
https://docs.victoriametrics.com/victorialogs/logsql/

● Provides an interactive command-line interface for querying -
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

● Provides web UI for querying -
https://docs.victoriametrics.com/victorialogs/querying/#web-ui

https://docs.victoriametrics.com/victorialogs/logsql/
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/
https://docs.victoriametrics.com/victorialogs/querying/#web-ui

VictoriaLogs: querying features

● Provides simple yet powerful query language - LogsQL -
https://docs.victoriametrics.com/victorialogs/logsql/

● Provides an interactive command-line interface for querying -
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

● Provides web UI for querying -
https://docs.victoriametrics.com/victorialogs/querying/#web-ui

● Provides rich HTTP querying API for integration with third-party tools -
https://docs.victoriametrics.com/victorialogs/querying/#http-api

https://docs.victoriametrics.com/victorialogs/logsql/
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/
https://docs.victoriametrics.com/victorialogs/querying/#web-ui
https://docs.victoriametrics.com/victorialogs/querying/#http-api

VictoriaLogs: querying features

● Provides simple yet powerful query language - LogsQL -
https://docs.victoriametrics.com/victorialogs/logsql/

● Provides an interactive command-line interface for querying -
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

● Provides web UI for querying -
https://docs.victoriametrics.com/victorialogs/querying/#web-ui

● Provides rich HTTP querying API for integration with third-party tools -
https://docs.victoriametrics.com/victorialogs/querying/#http-api

● Supports “tail -f” functionality for query results -
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/#live-tailing

https://docs.victoriametrics.com/victorialogs/logsql/
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/
https://docs.victoriametrics.com/victorialogs/querying/#web-ui
https://docs.victoriametrics.com/victorialogs/querying/#http-api
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/#live-tailing

LogsQL: VictoriaLogs query language

LogsQL: VictoriaLogs query language

● Very easy to learn and use

LogsQL: VictoriaLogs query language

● Very easy to learn and use
● Optimized for typical log analysis tasks over structured and unstructured

logs

LogsQL: VictoriaLogs query language

● Very easy to learn and use
● Optimized for typical log analysis tasks over structured and unstructured

logs
● Supports data extraction and transformation at query time

LogsQL: VictoriaLogs query language

● Very easy to learn and use
● Optimized for typical log analysis tasks over structured and unstructured

logs
● Supports data extraction and transformation at query time
● Supports powerful analytics

LogsQL examples

Select all the logs

*

Select all the logs with the “error” word

error

https://docs.victoriametrics.com/victorialogs/logsql/#word-filter

https://docs.victoriametrics.com/victorialogs/logsql/#word-filter

Select all the logs with the “error” word over the last 5
minutes

_time:5m error

https://docs.victoriametrics.com/victorialogs/logsql/#time-filter

https://docs.victoriametrics.com/victorialogs/logsql/#time-filter

Select all the logs with the “error” or “warning” word over
the last 5 minutes

_time:5m (error or warning)

https://docs.victoriametrics.com/victorialogs/logsql/#logical-filter

https://docs.victoriametrics.com/victorialogs/logsql/#logical-filter

Select all the logs with the “error” word over the last 5
minutes, which do not contain “Failed to process” phrase

_time:5m error -"Failed to process"

Select all the logs with the “error” word over the last 5
minutes for containers with the name “fluentbit-gke”

_time:5m error kubernetes_container_name:fluentbit-gke

Select all the logs with the “error” word over the last 5
minutes for containers with the name “fluentbit-gke” using
log stream filter (optimized version)

_time:5m error {kubernetes_container_name="fluentbit-gke"}

https://docs.victoriametrics.com/victorialogs/keyconcepts/#stream-fields

https://docs.victoriametrics.com/victorialogs/keyconcepts/#stream-fields

Select all the logs with IP addresses over the last 5
minutes

_time:5m ~"([0-9]+[.]){3}[0-9]+"

https://docs.victoriametrics.com/victorialogs/logsql/#regexp-filter

https://docs.victoriametrics.com/victorialogs/logsql/#regexp-filter

Count the number of logs for the last hour

_time:1h | count()

https://docs.victoriametrics.com/victorialogs/logsql/#count-stats

https://docs.victoriametrics.com/victorialogs/logsql/#count-stats

Select top 10 IP addresses seen in logs over the last week

_time:7d `remoteAddr="`

 | extract `remoteAddr="<ip>:`

 | stats by (ip) count() as rows

 | sort by (rows desc) limit 10

https://docs.victoriametrics.com/victorialogs/logsql/#extract-pipe
https://docs.victoriametrics.com/victorialogs/logsql/#stats-pipe
https://docs.victoriametrics.com/victorialogs/logsql/#sort-pipe

https://docs.victoriametrics.com/victorialogs/logsql/#extract-pipe
https://docs.victoriametrics.com/victorialogs/logsql/#stats-pipe
https://docs.victoriametrics.com/victorialogs/logsql/#sort-pipe

Select top 10 IP addresses seen in logs over the last week
(simplified version)

_time:7d `remoteAddr="`

 | extract `remoteAddr="<ip>:`

 | top 10 by (ip)

https://docs.victoriametrics.com/victorialogs/logsql/#top-pipe

https://docs.victoriametrics.com/victorialogs/logsql/#top-pipe

Select top 5 container names with the biggest number of
logs with the “error” word over the last hour

_time:1h error | top 5 by (kubernetes_container_name)

Select top 5 container names with the biggest errors rate
over the last hour

_time:1h

 | stats by (kubernetes_container_name)

 count() as total,

 count() if (error) as errors

 | math errors / total as error_rate

 | filter error_rate:(>0 <1)

 | sort by (error_rate desc) limit 5

https://docs.victoriametrics.com/victorialogs/logsql/#math-pipe
https://docs.victoriametrics.com/victorialogs/logsql/#filter-pipe

https://docs.victoriametrics.com/victorialogs/logsql/#math-pipe
https://docs.victoriametrics.com/victorialogs/logsql/#filter-pipe

Read LogsQL docs!

https://docs.victoriametrics.com/victorialogs/logsql/

https://docs.victoriametrics.com/victorialogs/logsql/

VictoriaLogs: real production case numbers

VictoriaLogs: real production case numbers

● Logs for the last year from our internal Kubernetes staging cluster
○ Rows: 1.9 billion (vl_storage_rows)

VictoriaLogs: real production case numbers

● Logs for the last year from our internal Kubernetes staging cluster
○ Rows: 1.9 billion (vl_storage_rows)
○ Disk space usage: 45GiB (vl_data_size_bytes)

VictoriaLogs: real production case numbers

● Logs for the last year from our internal Kubernetes staging cluster
○ Rows: 1.9 billion (vl_storage_rows)
○ Disk space usage: 45GiB (vl_data_size_bytes)
○ Uncompressed size of logs: 2.5TB (compression ratio: 55x)

(vl_uncompressed_data_size_bytes)

VictoriaLogs: real production case numbers

● Logs for the last year from our internal Kubernetes staging cluster
○ Rows: 1.9 billion (vl_storage_rows)
○ Disk space usage: 45GiB (vl_data_size_bytes)
○ Uncompressed size of logs: 2.5TB (compression ratio: 55x)

(vl_uncompressed_data_size_bytes)
○ RAM usage: 250MB (process_resident_memory_anon_bytes)

VictoriaLogs: real production case numbers

● Logs for the last year from our internal Kubernetes staging cluster
○ Rows: 1.9 billion (vl_storage_rows)
○ Disk space usage: 45GiB (vl_data_size_bytes)
○ Uncompressed size of logs: 2.5TB (compression ratio: 55x)

(vl_uncompressed_data_size_bytes)
○ RAM usage: 250MB (process_resident_memory_anon_bytes)
○ CPU usage: 5% of a single CPU core (process_cpu_seconds_total)

VictoriaLogs: real production case numbers

● Single-node VictoriaLogs container
○ CPU limits: 4

VictoriaLogs: real production case numbers

● Single-node VictoriaLogs container
○ CPU limits: 4
○ Memory limits: 14GiB

VictoriaLogs: real production case numbers

● Single-node VictoriaLogs container
○ CPU limits: 4
○ Memory limits: 14GiB
○ Persistent volume: 100GB standard (HDD-based Google Cloud disk)

VictoriaLogs: real production case numbers

● Single-node VictoriaLogs container
○ CPU limits: 4
○ Memory limits: 14GiB
○ Persistent volume: 100GB standard (HDD-based Google Cloud disk)

■ 75 read IOPS
■ 150 write IOPS
■ 12 MB/s read/write throughput

VictoriaLogs: real production case numbers

● Query performance
○ The last 100 logs with the ‘error’ word: 100ms

VictoriaLogs: real production case numbers

● Query performance
○ The last 100 logs with the ‘error’ word: 100ms
○ Count the number of logs with the ‘error’ word over the last day: 500ms (found ~2M logs with

‘error’ word)

VictoriaLogs: real production case numbers

● Query performance
○ The last 100 logs with the ‘error’ word: 100ms
○ Count the number of logs with the ‘error’ word over the last day: 500ms (found ~2M logs with

‘error’ word)
○ Count the number of logs over the last 100 days: 300ms (found ~500M logs)

VictoriaLogs: real production case numbers

● Query performance
○ The last 100 logs with the ‘error’ word: 100ms
○ Count the number of logs with the ‘error’ word over the last day: 500ms (found ~2M logs with

‘error’ word)
○ Count the number of logs over the last 100 days: 300ms (found ~500M logs)
○ Top 5 apps with the highest log volume over the last 100 days: 500ms

VictoriaLogs: real production case numbers

● Query performance
○ The last 100 logs with the ‘error’ word: 100ms
○ Count the number of logs with the ‘error’ word over the last day: 500ms (found ~2M logs with

‘error’ word)
○ Count the number of logs over the last 100 days: 300ms (found ~500M logs)
○ Top 5 apps with the highest log volume over the last 100 days: 500ms
○ Count the number of logs with “foobar” word across 1.9 billions of logs: 3s (found ~350

entries)

Useful links

VictoriaLogs - https://docs.victoriametrics.com/victorialogs/

LogsQL - https://docs.victoriametrics.com/victorialogs/logsql/

How collect Kubernetes logs -
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-logs-sing
le/README.md

Ingest other logs - https://docs.victoriametrics.com/victorialogs/data-ingestion/

Interactive command-line tool for querying VictoriaLogs -
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

https://docs.victoriametrics.com/victorialogs/
https://docs.victoriametrics.com/victorialogs/logsql/
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-logs-single/README.md
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-logs-single/README.md
https://docs.victoriametrics.com/victorialogs/data-ingestion/
https://docs.victoriametrics.com/victorialogs/querying/vlogscli/

